
Graph me,

I’m famous!

Indicator Wars

Raphaël Vinot
Help Desk and headdesk; ranting and coding

@rafi0t

Marion Marschalek
Threat dissector & professional PPT slide artist

@pinkflawd

Cyber, Cyber & Sharing

Every vendor sells the best feed ever,

only sometimes, they contain new info.

The Cloud is where all your indicators go to die,

so your vendor can resell them :)

those glassy leaflets are expensive y’know

Difficult to compare

Depending on a single vendor,

… or a format that may turn out to be incompatible

… because sharing means caring

The WHYs of Information Sharing

Metrics. Moarrrr metrics.

gimme all binaries that call LoadLibrary/GetProcAddress on multiple occasions

gimme all binaries that listen to a C&C command named "listprocesses"

gimme all binaries with a code section entropy between 6.56778 and 6.60000

gimme binaries that call CryptEncrypt and contain the string www.maldomain.com

gimme all binaries that are able to list running processes, contain the string „Babar“, and

were compiled before 2011

Wishlist

Packer /

Evasion
Setup

Call

home

might or might not

be analyzed

Encrypting files
Keylogging
Screenshots
Screen captures
DDoS
Downloading more malware

What my customer thought the

malware does

What my sandbox thought the

malware does

What the malware REALLY doesWhat I thought the malware does

We want

- Way to statically extract

behavior information

- And general metrics

- Which are easily shared

We did

- Plug a call graph generation

tool into MISP

- Based on radare2

- Find and evaluate a _lot_ of

indicators

Static Call Graphs

Function call graphs

Function cross references within code section

References to function offsets

Outside executable section(s)

Nodes: functions

=> Offset, size, calling convention

Edges: calls, handler functions

Neo4j & r2graphity

Parsing Windows PE call graphs to Neo4j

Functions, strings, API calls

“Fake” super node for graph separation &

distance measuring

https://github.com/pinkflawd/r2graphity

Sofacy / APT28 as a test case

So many samples and incidents to pick from..

Painting here

Strings
Strings with code cross references

String list detection

- length + alignment

- following strings w/o cross references

Evaluation: ASCII, cross references,

experimental character frequency test

Strings and
their
occurence
per sample

Error Messages

Error Messages

Samples with references
to string ‘OpenSSL’

Supports regex.
Yes, really.

APIs

Cross references on symbols

Indirect calls

- parsing for mov/lea

- disassembling further

- call and jmp considered xref

Thunk pruning

Dynamic loading

“Behavior” Gadgets
For APILOADING found {'GetProcAddress': '0x1000def8', 'LoadLibrary': '0x1000def8'}

For APILOADING found {'GetProcAddress': '0x10014e88', 'LoadLibrary': '0x10014e88'}

For READFILE found {'ReadFile': '0x100032a0', 'CreateFile': '0x100032a0'}

For READFILE found {'ReadFile': '0x1000d6b0', 'CreateFile': '0x1000d6b0'}

For APILOADING2 found {'GetModuleHandle': '0x1000fbd3', 'GetProcAddress': '0x1000fbd3'}

For APILOADING2 found {'GetModuleHandle': '0x1000f8ef', 'GetProcAddress': '0x1000fbd3'}

For APILOADING2 found {'GetModuleHandle': '0x10012552', 'GetProcAddress': '0x10012552'}

For SHELLEXEC found {'ShellExecute': '0x1000d330'}

For FILEITER found {'FindClose': '0x1000d330', 'FindFirstFile': '0x1000d330', 'FindNextFile':

'0x1000d330'}

For CREATETHREAD found {'CreateThread': '0x1000ebc2'}

For CREATETHREAD found {'CreateThread': '0x10009b10'}

For CREATETHREAD found {'CreateThread': '0x10002190'}

For CREATETHREAD found {'CreateThread': '0x1000a050'}

For CREATETHREAD found {'CreateThread': '0x10001820'}

For CREATETHREAD found {'CreateThread': '0x10001000'}

For WRITEFILE found {'WriteFile': '0x1000d880', 'CreateFile': '0x1000d880'}

For WRITEFILE found {'WriteFile': '0x1000a4f0', 'CreateFile': '0x1000a4f0'}

For WRITEFILE found {'WriteFile': '0x10001f80', 'CreateFile': '0x10001f80'}

For RECV found {'recv': '0x1000b290', 'send': '0x1000b290'}

For SCREENSHOT found {'GetDeviceCaps': '0x100094d0', 'CreateCompatibleBitmap':

'0x100094d0', 'BitBlt': '0x100094d0', 'CreateCompatibleDC': '0x100094d0'}
For REGQUERY found {'RegOpenKey': '0x10001000', 'RegQueryValue': '0x10001000'}

Scanning for

Gadgets

Pre-defined API patterns
Searching the graph for anchor
Scanning nodes in close vicinity

Painting here

Thread Model Modelling

Number of calls to CreateThread

Shortest path to CreateThread

Number of handler functions

Average size of handler functions

Size of biggest handler function

shortest

path

number of

handlers

average

handler

size

largest

handler

A Feature Factory ^^
“Build it simple, then scale it up.” - Smart guy from Google

Performance?

Scalability?

Robustness?No, we don’t do machine learning

Yes, its built on top of radare2

The feature “flattening” process

Its fast, but not extremely fast

Samples and indicators, sorted and tagged

Clustering of samples

Adding a web interface

Step back in time:
I know what you did last summer

https://github.com/MISP/misp-workbench

So… Workbench.
The obstacles:

- Have root on your MISP server of choice

- Run 5 scripts in the right order to have a standalone interface

- Understand my trail of thought, because open source, yay

- And anyway, works on my machine

How do we integrate <new feature>

in MISP?

Which solutions exist?

Which of them are actually useable?

Can we base our implementation on an existing standard?

Is that standard sane??

Requirements
1. Objects to group indicators as one entity

2. Feasible way to extract the indicators from binaries & graphs

3. Organise, store & display everything

4. Means for object interconnection & correlation

5. Flexibility & scalability & buzzwordbuzzword

MASTERPLAN
Object definition which can be plugged into MISP

PE & graph feature extraction

Mapping of features to object definition

Generate a JSON file in MISP Object format

Implementation of objects in MISP core

Objects for other file formats

Integration of the feature generator in the STL

Soon-ish: string search, automatic correlation on

per-instance basis

Later-ish: behaviour gadget search, straight from

the graphs

Metrics Engineering
Feature extraction

In a normalized way

Using open source tools

Producing comparable results

With practical relevance

Chicken & Egg Problem

1. You can’t identify good indicators if they aren’t

stored, accessible, and easy to generate

2.It doesn't make sense to rely on indicators

if every other research project creates

new ones

Wrappn‘ it up

Graphs

Tons of metrics

MISP objects

Exchange platform & infrastructure

Feature Marxism
All the features

- by default,

- on all samples,

- shared with everyone,

- constantly, integrated, automatic

Historical data

De-facto standards

Implicit feedback loops

Thank you!

Marion Marschalek

@pinkflawd

http://karmadecay.com/

Raphaël Vinot

@rafi0t

