
BLE authentication design challenges
on smartphone controlled IoT devices:

analyzing Gogoro Smart Scooter

GD、CSC

Privacy and Risk Management Lab
IM, NTUST, Taiwan

Is Smart Phone a secure key for vehicle?

Speakers

G D
• Graduate Student at NTUST IM

• CHROOT/HITCON Coordinator

• Team T5 CTO

• Digital Forensics & Incident Response

• Threat Intelligence Program & Plat.

• Research on Foods, plays CTFs

• Occasionally got vulnerabilities

• Synology Bounty Program (2015)

CSC
• Associate Professor at NTUST IM

• Ph.D., Dept of IM, NTU

• Gomaji (TW.8472) Board member

• CISSP, CCFP, CSSLP, CISM, PMP

• Published many practical security
papers on journals. Helped many
private and public sectors to
establish info security policy.

HITCON

• CTF Team
• DEF CON 2nd Place

• CTF Event
• DEF CON Qualifier

• Community Conf

• Enterprise Conf

• Girls Conf

Table of content

1. Introduction to Bt Low Energy, Security Manager Protocol,
Smartphone authentications to controls IoT devices via BLE.

2. BLE 4.0 has many privacy features, restricting vendor powers,
Hardware identifiers are either limited or randomized.

3. Challenges when designing auth methods, many vendors
giving up SMP pairing, using just plaintext transmissions.

4. How to analyze BLE protocols, we exaimed many health and
IoT devices, including Gogoro Smart Scooter vehicle.

5. Without SMP pairing, these vendor-designed authentications
are sometimes flawed, so we are able to ignite other Gogoro.

6. We propose a better auth protocol: Dual-counter enhanced.

Bluetooth 4.0

High Speed Classic Low Energy

WiFi mixed BT Most common BT Originally "Wibree"

Persistent connections Persistent connections Non-persistent

High power consump. Mid power consump. Low power consump.

High bandwidth Mid bandwidth Low bandwidth

Short range Mid range Long range

(never tried)
Headphones,

Keyboards, Mouse
Health wrists, Temp.
sensors, IoT devices

Bluetooth 4.0 Low Energy

Method 方向 功能

Request Central -> Peripheral 一般發送訊息

Response Peripheral -> Central 回覆 Request 用

Commands Central -> Peripheral 不用 Response

Notifications Peripheral -> Central 不用 Confirm

Indications Peripheral -> Central 需要 Confirm

Confirmations Central -> Peripheral 回覆 Indication 用

Usually Server has smaller battery and operates only when requested. Fig. Ref: Stanfy Inc, 2015

BLE is session-less, 7 methods, similar to HTTP

BLE widely adopted in Health & IoT

Curiosity to understand how it works.

BLE built-in profiles

• Time, Temp, Energy

• Weight, User profile

• Blood pressure, glucose

• Body mass, heart rate

• Speed, direction, location

BLE playgrounds

• Nordic nRF App

• Node.js bleno

BLE is easy to hijack

• Sending vibrate message to nearby MI wristbands

Ref: “Le IoT 想想物聯網 blog”

All BLE sniffer got is in plaintext ?!

Security Manager Protocol

Pairing Bonding Re-establishment

Short Term Key Permanent Key Permanent Key

BLE 4.0 SMP pairing

Pairing Mtd. MitM attacks Usability

Just Works Vulnerable Convenient, Un-authed

Passkey Entry If you brute-PIN Needs screen & Keyboard

Out-Of-Band Secure via NFC Needs NFC transceivers

BLE 4.2 screen numb. comp.

Just Works is Un-authed

Why vendors did not use SMP pairing:
1. Pairing takes time and effort
2. Paired does not always means secure
3. No screen for numeric comparison

BLE 4.0 privacy features

• HW Identifier Read Limitations
• Prevents App/Ads tracking user

• MAC Address always 02000000000000

• HW Identifier Randomization
• Prevents AP tracking/nearby scanning

• MAC Address different per power-cycle

• SMP paired device gets fixed MAC via IRK

• How to authenticate device without HW identifier?

Gogoro Smart Scooter

Public Rental in Berlin

Our current research is based on Taiwan Gogoro.
Berlin Gogoro might work different from Taiwan’s.

Analyzing method

analyze protocol w/
Ubertooth One

Reversing
iOS & Android App

Figure out unlock
procedure

Write simulation
unlock program

Analyze storage
Security_Key

Analyze Network
API interfaces

Threat Modeling

Notify vendor

Responsible
disclosure

Key Fob Unlock (BLE)

Origin Handle Value Function

Key Fob CONNECT_REQ Init connection

Scooter 0x37 01 00 Command ID

Scooter 0x25 c2 e7 20 bf d2 99 9d 43 68 c6 2d 65 39 3d 72 c9 f3 Rand. Challenge

Key Fob 0x36 d2 25 57 33 19 18 51 fd ae 7d 1b ed 85 e0 10 78 e2 Signed. Response

Scooter LL_TERMINATE_IND Ends connection

(this is much better than widely adopted Keeloq protocol)

Mobile App (Gateway)

• My Gogoro single-sign-on

• App gets scooter information

Mobile App Pairing & Unlock

Only GATT protocol, no BLE SMP pairing observed.

Vendor's challenge
• How to design authentication protocol when

we did not BLE pairing and have no HW identifier?

BLE Gogoro Service

BLE Service UDID last 6-bytes
must be Scooter MAC Address

Gogoro App Protocol

Origin Cmd Function

App A0 GetScooterSettingWithType

App A1 GetScooterErrors

App A2 GetScooterInfo

App A3 SetScooterSetting

Scooter A4 ScooterGetSettingStatus

Scooter A5 ScooterErrorStatus

Scooter A6 ScooterInfoState

Scooter A7 ScooterSetSettingStatus

Scooter A8 NotifyScooterError

Scooter A9 NotifyInfo

Scooter AE PurchasedStatus

Scooter AF ScooterInfoState

Scooter B0 ECU Challenge nonce

App B1 ECU Response digest

Scooter B2 ECU unknown

Scooter B3 ECU Error

App B4 ECU Cmd (Lock, Unlock, Open Trunk)

B-prefix: ECU Challenge Response

90 A2 08 00 00 00 02 C4 (hex)

90: Header, A2: Command, 08: Length,

02: Parameter, C4: Checksum

A-prefix: querying information

Gogoro Unlock flow

1. Scooter scans nearby peripheral for GATT Gogoro Service
And if UUID {351AAF0F-}last 6-bytes matches its MAC Address

2. Mobile App reads GATT Scooter status, enable unlock button.
Click to send ECU_Cmd(0xB4): 00 Lock, 01 Unlock, 02 Op Truck

3. Scooter writes ECU_Challenge (0xB0), a random 256 bit nonce

4. Mobile App notify ECU_Response (0xB1), also 256 bits
ECU_Response =SHA256(ECU_Challenge, Security_Key)

5. Scooter compares ECU_Response if correct
then ECU_Cmd will be executed, Unlocked.

the Security_Key

• ECU_Response =SHA256(ECU_Challenge, Security_Key)

• Early App put Security_Key in Document folder (slightly encrypted)

• iOS MobileAppProp.plist has ScooterSKey

• Android Settings.xml has AppSettings_DefScooter/encryptedkey2

• Decrypting: AES-256, CBC/PKCS7Padding, IV=UserId, Key = ScooterUUID

• Document folder can be backed-up via iTunes / Android adb

• Various methods: cable Juicy Attack, iTunes backup folder extraction etc.

• AndroidManifest.xml has allowBackup flag set to true

• Security_Key can be retrieved from WebAPI

• Attacker can brute My Gogoro membership

• App Cookie can be stolden (MobileAppProp.plist has Web_Token)

• https://mobile-pro.gogoroapp.com/WebService/Web/GetKey

https://mobile-pro.gogoroapp.com/WebService/Web/GetKey

Insecure App Data Storage

• Token, Certificate should be stored encrypted
• Manages Timeout, Password Tamper etc.

• Limits user, process access and key export

• Most OS platforms has secure storage zone
• Apple iOS/macOS Keychain

• iPhone 6~ Secure Enclave

• Android Keystore
• Samsung S6~ KNOX

• Windows Protected Storage
• HSM Such as UbiKey

Unlock code generator

• We wrote our Android App to generate
ECU_Response and unlocked scooters
successfully if Security_Key is known.

• Demo

Via this experiment we proved:

1. Security_Key is necessary to unlock scooter.

2. Security_Key can be cloned or transferred.

3. Gogoro Scooter cannot identify Mobile App hardware.

Gogoro Analysis Summary

• HW identifier privacy makes authentication difficult
• IoT device trusts Security_Key rather than your Mobile Phone

• Protect your Security_Key hard !!!

• Insecure App Data Storage vulnerable
• Security_Key should not be stored in Document folder

• Should be stored at Keychain / KeyStore

• Other possible weakness
• WebAPI should do SSL Cert Pining to prevent MitM

• Relay-Attack for Challenge-Response might be possible

• Dumping Security_Key from Key Fob MCU or Scooter ECU ?

Gogoro system is generally safe…

• Although BLE SMP pairing is not adapted,
Challenge/Response is better than Keeloq OTP

• Obtaining Security_Key from mobile phone is
possible only when malware infected/jailbroken.

• Obtaining Security_Key from PC backup folder
still needs to infect PC and decrypt slightly AES.

• Obtaining Security_Key from WebAPI might be the
easiest way if username / password can be retrieved,
brute-force or from other leaked database.

How to steal a Gogoro Scooter

• Infect the owner’s phone or backup PC
• Obtain and decrypt Security_Key from plist

• Owner open App to check fuel in Public Wifi
• Do SSL MitM to get his cookie
• Ask WebAPI for Security_Key

• Simulate the BLE Gogoro Service
• With target scooter’s MAC UUID
• Approach target scooter and do ECU Challenge

Response
• Rode away as soon as possible.

• But you still cannot exchange battery :-(
• Gogoro Battery has NFC authentication.

SSL MitM to retrieve Security_Key

Responsible disclosure

• 2016/02 App supports BLE unlock

• 2016/04 We notified Gogoro Vendor

• 2016/04 Fixed Security Key store

• 2016/07 Fixed SSL Cert verification

• 2016/07 Issued force logout update

• 2016/12 Full Recall / Replace ECU

• Better Bluetooth Pairing Function
We will keep investing on

security area and have more
frequently release for security

improvement in the future.

Designing good IoT-phone authentication

• Device does not know each other
• IoT device does not know phone

• IoT device knows secret key

• IoT server provision secret key to phone

• Preventing Security_Key cloning
• BLE 4.2 SMP Secure Connections

• Phone has hardware identifier

• store it in Secure Element

• use OOB OTP such as SMS

• add dual-counter to detect

Auth Methods Comparisons

Method Advantage Disadvantage

Server Provision Secret Key Phone device independent Easy to steal, hard to detect

BLE 4.2 Secure Connections Prevents MITM and clone. Need a numeric display

Hardware Identifier ID device. Prevents clone. Privacy concern

Store in Secure Element Encrypted, difficult to clone Not every phone has SE

OOB OTP such as SMS Trusting phone number. OOB Channel cost (SMS)

Dual-counter detection Can easily detect abuse. Cannot prevent abuse.

Dual-counter enhanced

Device S. Phone Counter S

Device Server Counter D

Device Server
KD Permeant Shared Key
TD Counter D
IDS Identification
KSD HMAC(KD, IDS) (temp)
HTD HMAC(KD, TD) (temp)

Device Smart Phone
Cha. RAND()
Res. HMAC(KSD, HTD, TD)
TS Counter S
R Command Request
HTS,R HMAC(KSD, TS, R)

When HMAC(Key) is used,
Counter will change.
If counter de-synced,
User can detect abuse.

HMAC of

Can revoke HMAC(Key) when phone lost

Can detect when HMAC(Key) is abused

Conclusion

1. introduction to Bt Low Energy, Security Manager Protocol,
Smartphone authentications to controls IoT devices via BLE.

2. BLE 4.0 has many privacy features, restricting vendor powers,
Hardware identifiers are either limited or randomized.

3. Challenges when designing auth methods, many vendors
giving up SMP pairing, using just plaintext transmissions.

4. How to analyze BLE protocols, we examined many health and
IoT devices, including Gogoro Smart Scooter vehicle.

5. Without SMP pairing, these vendor-designed authentications
are sometimes flawed, so we are able to ignite other Gogoro.

6. We propose a better auth protocol: Dual-counter enhanced.

Future research

• Hardware hacking
• Dump Security_Key from Key Fob MCU (TI CC2540)

• Dump Security_Key from Scooter ECU (Atmel)

• Cryptography analysis
• Challenge nonce randomization strength?

• Challenge response acceptance timeframe?

• Relay-Attack on challenge responses
• Attacker A approach Owner

• Attacker B approach Scooter

• A & B Relay challenge response over internet

Special thanks to

• Professor CSC’s guidance and research

• Gogoro designed a BLE Smart Scooter

• Hiraku help dumping iOS app

• Support from lab and company colleagues

Q&A

• IoT is Security or Nothing

• Any questions?

• GD@TeamT5.org

References

• Bluetooth SIG, Bluetooth Smart (Low Energy) Security. Bluetooth SIG, 2016
https://developer.bluetooth.org/TechnologyOverview/Pages/LE-Security.aspx

• Bluetooth SIG, Bluetooth Specification Version 4.0, Bluetooth SIG, 2010

• Andrew Garkavyi, Bluetooth Low Energy. Essentials for Creating Software with Device to Smartphone Connectivity, Stanfy Inc, 2015
https://medium.com/@stanfy/bluetooth-low-energy-essentials-for-creating-software-with-device-to-smartphone-connectivity-
5164c71963e7

• Mike Ryan, Bluetooth: With Low Energy comes Low Security, iSEC Partners, USENIX WOOT, 2013.

• Mike Ryan, Hacking Bluetooth Low Energy: I Am Jack's Heart Monitor, ToorCon 14, 2012.

• Lindell, A. Y. Attacks on the pairing protocol of bluetooth v2.1, BlackHat US, 2008.

• Samy Kamkar, Drive It Like You Hacked It, Defcon 23, 2015
http://samy.pl/defcon2015/2015-defcon.pdf

• Gogoro, Gogoro Smart Scooter 規格書, 睿能創意股份有限公司, 2015.
http://images.gogoroapp.com/download/PDF/tw/Gogoro-Smartscooter-Spec-Sheet-2015-06-17-02-Chinese.pdf

• Google, Android Physical Identifier Privacy, Google, 2016.

• https://developer.android.com/about/versions/marshmallow/android-6.0-changes.html#behavior-hardware-id

• Apple, iOS Physical Identifier Privacy, Apple, 2016.
https://developer.apple.com/library/ios/documentation/UIKit/Reference/UIDevice_Class

• N. Gupta, Inside Bluetooth Low Energy. Artech House, 2013.

• Le IoT 想想物聯網 Blog, 2016
https://thinkingiot.blogspot.tw/

https://developer.bluetooth.org/TechnologyOverview/Pages/LE-Security.aspx
https://medium.com/@stanfy/bluetooth-low-energy-essentials-for-creating-software-with-device-to-smartphone-connectivity-5164c71963e7
http://samy.pl/defcon2015/2015-defcon.pdf
http://images.gogoroapp.com/download/PDF/tw/Gogoro-Smartscooter-Spec-Sheet-2015-06-17-02-Chinese.pdf
https://developer.android.com/about/versions/marshmallow/android-6.0-changes.html#behavior-hardware-id
https://developer.apple.com/library/ios/documentation/UIKit/Reference/UIDevice_Class

