
Ads networks are following you, follow them back
(The web is even worse than you thought)

Quinn Norton - @quinnnorton
Raphaël Vinot - @rafi0t

https://www.circl.lu

2018-03-15

https://www.circl.lu

Who are we

Quinn Norton

• Freelance journalist & writer

• Former (kinda) UI/UX

• Infosec trainer

Raphaël Vinot

• Incident responder @ CIRCL.lu

• Developer

• Infosec trainer

2 of 26

3 of 26

4 of 26

Origin of the project

5 of 26

The lawyers’ reply

_
("))/

_

”*long look at each other* *pause* yeeeeahhhh..... *shrug* Can you help us?”

6 of 26

Our answer

looked at each other *looked back at them* and said ”...We’ll get back to you

on that”

7 of 26

Current situation

• Very complex and huge websites (often close to 10mb for the front page)

• Extremely dynamic

• Dozens of 3rd party components

• ... which may pay the bills, or keep the site going

• No tools to audit such a website (please prove me wrong)

8 of 26

Day to day CERT work

• Phishing websites are super common

• They are also often relatively simple

• ... unless they’re not (i.e. dynamically generated JS, chained
redirects)

• Reproducing is painful (i.e. User Agent, timing, source IP)

• We like to have the newest browser, using an older one is annoying

9 of 26

Requirements

• Complete emulation of a browser (JS, iFrames, redirects, cookies,
headers)

• Keep the dataset for analysis later, screenshot of the page, full
HTML

• Easy to deploy

• Flexible way to pass parameters to the query

• Legit browser, not IE6 in virtualbox

• Something a human can use efficiently

10 of 26

Splash and Scrapy

• Instrument a recent webkit (Chrome/Chromium)

• Let you define a user-agent

• Can take a screenshot of the website

• Comes in a docker image

• Killer feature: Returns a HTTP Archive (HAR)

Available as a standalone python3 module for your own project:
https://github.com/viper-framework/ScrapySplashWrapper

11 of 26

https://github.com/viper-framework/ScrapySplashWrapper

HTTP Archive

• List all the requests and all the responses

• Including headers, cookies, and redirects

• But also every body of every response

• ...and that means hundreds of unique entries

12 of 26

Ben Watts – https://www.flickr.com/photos/benwatts/4087289013

13 of 26

https://www.flickr.com/photos/benwatts/4087289013

Digging into the HAR file

Two things stand out and look like a good starting point:

• redirectURL (the location key in the HTTP header)
◦ URL1 redirects to URL2

• The referrer key in the HTTP headers
◦ All the URLs with the referrer key set are loaded from that one

Sounds like we could built a tree, right?

14 of 26

15 of 26

The beautiful things you find on webpages

Turns out the redirected URL can be any of these:

• Full URL

• URL without the scheme (http/https will be guessed)

• The path, with or without ”/”

• Just the parameters (”;...” attached to the path of the caller)

• Just the query (”?...”attached to the parameters)

• ...port number (just to mess with you)

And of course, the referrer header can be, and often is, stripped out.

16 of 26

T.J. Hawk – https://www.flickr.com/photos/102627552@N04/25440096000

17 of 26

https://www.flickr.com/photos/102627552@N04/25440096000

iFrames to the rescue

Turns out iFrames didn’t stay in the 90s. They...

• Can load more iFrames

• Can redirect to other pages, containing more iFrames

• Can contain JavaScript

• Can set/read cookies

Splash saves them in a tree-like format, so that’s easy to attach.

18 of 26

The final touch: regexes!

No hellscapeˆWsoftware project is complete without regexes, right?

• Search in each body for URL-like strings

• Lookup against the HAR entries

• Attach in tree when possible

.... And the few URLs I wasn’t able to attach anywhere are connected
to the root node as ”orphans”

19 of 26

Tree capabilities

• Not reinventing the wheel: use ETE Toolkit (phylogenetic trees
library)

• Each node has features: type of content, cookies, headers, full
body

• Possible to search each features individually

• Get ancestors and children

20 of 26

I heard you like trees

Problem with the current tree:

• Too many URLs

• URLs are way too verbose

• Impossible to display efficiently

So let’s make moar trees:

• Aggregate by hostname

• Aggregate features accordingly (cookies, content type)

Now available in a standalone python3 module:
https://github.com/viper-framework/har2tree

21 of 26

https://github.com/viper-framework/har2tree

Aaand the web interface (aka The Glue)

• Overview of the hostnames

• Overview of what is loaded by which domain

• Collapse parts of the tree

• Expand hostnames to see the full URLs

• See details of each URL

• Download body loaded by a specific query

22 of 26

DEMO

https://github.com/CIRCL/lookyloo

https://lookyloo.circl.lu

23 of 26

https://github.com/CIRCL/lookyloo
https://lookyloo.circl.lu

Next steps

• New expansion box (Within existing trees)

24 of 26

Next steps

• Add more meta informations in the icons (iFrame, missing referer,
content types)

• Automatic lookups against 3rd party services (VT, MISP,
Phishtank)

• Compare runs with different User agents

• Add the possibility to crawl a website when logged-in

• Detect cookies set and read by different actor

25 of 26

References - Q&A

• Scrapping module: https:

//github.com/viper-framework/ScrapySplashWrapper

• Tree generator:
https://github.com/viper-framework/har2tree

• Web interface: https://github.com/CIRCL/lookyloo

• Demo instance: https://lookyloo.circl.lu

• Contact: raphael.vinot@circl.lu - @rafi0t

26 of 26

https://github.com/viper-framework/ScrapySplashWrapper
https://github.com/viper-framework/ScrapySplashWrapper
https://github.com/viper-framework/har2tree
https://github.com/CIRCL/lookyloo
https://lookyloo.circl.lu

