
When Virtual Hell Freezes Over-
Reversing C++ Code

Gal Zaban
@0xgalz

<3

id;whoami

● Gal Zaban
● Reverse Engineer
● Security Researcher at Viral Security Group
● In my spare-time I like sewing

This is my own private research

Agenda
● REsearch

○ C++ Internals
■ Object Creation
■ Inheritance
■ Multiple Inheritance
■ Vtables
■ Virtual calls

● DEvelopment
○ IDAPython - Breakpoints
○ “Virtualor” - IDAPython framework that automates reverse

engineering of C++

The Problem

Reversing C++ is Hard

Dynamic Object Creation

Dynamic Object Creation

Dynamic Object Creation

Dynamic Object Creation

Object Creation

Action Assembly

Heap Allocation call operator new(uint)

Constructor Call call j_gz_Object_ctor

Basic Constructor
Action

Assembly

Object Assembly

VTable mov dword ptr [eax], VTable

Member1 movsd qword ptr [eax+8], xmm0

Member2 -

... -

MemberX -

How Does A Vtable Look Like?

FatherA Vtable

PrintHello()

PrintHelloMe()

PrintNum()

Father0 Vtable

PrintHello()

PrintHelloMe()

Vtable In IDA

VTables and Virtual Calls

Assignment of
the vtable to EDX

Move the virtual
func to EAX

The Virtual Call

Multiple Inheritance

Multiple Inheritance

Multiple Inheritance Structure

FatherA

FatherB

C’s Members

The Son’s Full Object

C_A_VTable

FatherA_Member1

....

FatherA_MemberX

C_B_VTable

FatherB_Member1

...

FatherB_MemberX

C_Member1

...

C_MemberX

Function Calls w Multiple Inheritance

It requires a lot of work

I wanted to make it fluffy

IDAPython + IDC =

IDAPython is ezpz to write

But IDC is more extensive

How it all began

Virtualor

Automated IDA tracing

● Create trace breakpoints on virtual calls

● Parse the trace file created by IDA

The Tracing problem

● It didn’t give a realtime solution for vtables

● This solution can only provide the specific
function call and not all the vtable

● Taint backward to the instruction that assigns
the relevant function to the register of the
virtual call

● Create the structure of the vtable based on the

vtable base pointer

● Correlate between the structure and the vtable
pointer

How can we make it a dynamic solution?

IDAPython- How to create a
Breakpoint

Hook VTables Pointers

● Find all the virtual calls
● Add breakpoints on the vtable’s function

assignment

Conditional BP as a hook

● Write code inside the BP conditions
● Add false binary condition in order to disable

the breakpoint prior to the BP execution

Conditionals BP and IDAPython

● By default IDAPython support only IDC
Conditional Breakpoints

● In IDC conditions we cannot #include idc.idc

IDAPython internals

● Diving into the files of IDAPython modules
● We must find a way to change the condition to

IDAPython

The new BP Creation

The Hook Purpose

● Create IDA structures of the vtables

● Connect the structures with the virtual calls

● Add comments and references to the code

● Correlate the vtable base pointer to its struct

The Hook location

● The breakpoint located on the assignment of
the relevant function to the register.

Get The Vtable Pointer

What Created the Hook

p_vtable = idc.GetRegValue(\"""" + reg_vtable + """\")

pv_func_addr = idc.GetRegValue(\"""" + reg_vtable + """\") + """ + offset + """

Get The Vtable Pointer

● And this is how it looks in the hook’s condition:

Get Functions From Vtable
What Created the Hook

all_functions = []

if """ + offset + """ > 0:

 cnt = 0

 while cnt <= """ + offset + """:

 pv_func_addr = idc.GetRegValue(\"""" + reg_vtable + """\") + cnt

 v_func_addr = get_wide_dword(pv_func_addr)

 v_func_name = GetFunctionName(v_func_addr)

 all_functions.append(v_func_name)

 cnt += 4

Now we have we have the vtable!

Create The Structure

What Created the Hook The Vtable Name

struct_id = add_struc(-1, "vtable_" + hex(p_vtable), 0) vtable_0x1379ba8L

Add Vtable Functions as Members

What Created the Hook Functions Members
Examples

cnt = 0
for func_name in all_functions:

 idc.add_struc_member(struct_id, “v_” + func_name,
 cnt*4 , FF_DWRD, -1, 4)
 cnt += 1

v_sub_1359e84

OR

v_gz_calc_size

This is how the structure looks like
now...

Unfortunately It's not Fluffy Enough..

Because we also
want comments!

Add Comments To The Structure

● Add where the function were assigned

● Add function’s names to existing comments
○ using the same function from different parts

of the code.

Add Comments To The Structure
What Created the Hook

cmt_curr = idc.GetMemberComment(struct_id, cnt*4, 1)

New Comment
if cmt_curr== None:
 if """ + offset + """ == cnt*4:
 idc.SetMemberComment(struct_id, cnt*4 , "Was used in address:"
 + " """ + hex(start_addr) + """" , 1)

Adding function’s names to existing comment
else:

 cmt_new = cmt_curr
 cmt_new += ", " + " """ + hex(start_addr) + """ "
 idc.SetMemberComment(struct_id, cnt*4 , cmt_new , 1)

Add Comments To The Assembly
What Created the Hook

virtual_call_addr = """ + hex(start_addr) + """

last_text = idc.get_cmt(virtual_call_addr, 1)
if last_text == None:
 last_text = ""

idc.set_cmt(virtual_call_addr, last_text + "vtable structure is:
" + "vtable_" + hex(p_vtable) + ", function: " + curr_func, 1)

And One Last Thing To Add ...

Structure Offset and False Condition

What Created the Hook

idc.op_stroff(virtual_call_addr, 1, struct_id, 0)

"Gal" == "IDA"

Now The Hook Is Finished!

The Hook

Before

After- vtable structures

After- The Disassembly

What’s next?

● Add structures for all the objects (local, static,
dynamic) and the inheritance.

● Add logic to the names of the functions in the
vtables based on their code: strings, function
calls, loops and more.

@0xgalz

