
1

From Zero to Secure Continuous Deployment
in 60 Minutes

Florian Barth

Matthias Luft

2

o THE Digital Wallet

o 20.000.000 users
50 countries
5 offices

o 25.000.000,000 rpm (onth ;))
100 micro services
10 servers
5 persons doing backend DevOps

3

o Vendor-independent

o Established 2001

o 65 employees, 42 FTE consultants

o Continuous growth in revenue/profits
o No venture/equity capital, no external financial

obligations of any kind

o Customers predominantly large/very large
enterprises
o Industry, telecommunications, finance

4

Avengers, assemble!

Captain Security DareDeveloper

5

I dare you to create an IaC-based automated CD pipeline!

Give me 60 minutes!

You have 30, as I will need to secure that thing!

I’ll do it in 10!

66

Agenda

o Intro CD, DevOps, and key technologies

o “Let‘s get our brains and hands dirty“

o Sermons and Preaching by Cpt Security

7

DevOps

“DevOps is the philosophy of unifying
Development and Operations at the culture,
system, practice, and tool levels, to achieve
accelerated and more frequent delivery of
value to the customer, by improving quality in
order to increase velocity.”

Rob England, 2014

8

Continuous Delivery

“Continuous Delivery (CD) is a software
engineering approach in which teams
produce software in short cycles, ensuring
that the software can be reliably released at
any time. It aims at building, testing, and
releasing software faster and more
frequently.”

DOI: 10.1109/MS.2015.27

https://doi.org/10.1109/MS.2015.27

9

Continuous Deployment

… is often confused with Continuous Delivery
and “means that every change goes through
the pipeline and automatically gets put into
production, resulting in many production
deployments every day.”

https://martinfowler.com/bliki/ContinuousDelivery.html

https://martinfowler.com/bliki/ContinuousDelivery.html

10

Immutable Infrastructure

o “Servers are cattle not pets”

11

Immutable Infrastructure

o “Servers are cattle not pets”

o “Servers are syringes”

o Spawn your infra from a template or recipe

o Update, Test it, Spawn new, Trash old

12

Infrastructure-as-Code

o Manage und provision data centers
through machine-readable definition files

o Version control your infrastructure

o Documentation & Evolution

o Static/Dynamic analysis

13

Prepare to be steamrolled…

o A lot of content and prerequisites

o We want to explain the actually difficult
parts, not the parts that are routine
work.

14

Goal

o See the buzzwords in action

o Gain a general understanding

15

My First Contact with DevOps

o Role: Unifying Dev, Ops, Net, Sec, …

o Scale: users growing exponentially

o Infra: 5€ “vServer”

o Stack/Tooling: nginx, php, ssh, vi

o CD: “:w”

o Since then we learned a lot!

16

Ingredients

App Stack Definition Platform

Infrastructure
Definition

App Source Code Software

Infrastructure

17

This is DareDeveloper, Welcome to Infrastructure as Code

18

19

Demo

Terraform

20

This is DareDeveloper, Welcome to App Stack as Code

21

vote
Python

queue
redis

worker
.NET

db
PostgreSQL

result
node.js

sockpuppet
node.js

22

Demo

Docker Compose

Service Infra

23

This is DareDeveloper, Welcome to Full Auto CD

24

“CI”

Service

Artifact

Repository

Execution

EnvironmentVCS

build & test

push

25

Demo

Gitlab

Service Config

26

Big Picture :tm:

27

Deployments

o Deployment Strategies

o Rolling Deployment

o Green/Blue Deployment

o Canary Deployment

o Feedback from Logging & Metrics

28

Docker Build

o Gitlab Runner running in a Docker container

o Dedicated Docker container for each job in
the pipeline

o By distributing the runner „swarm-scale“
build cluster can be formed

29

30

This is Captain Security, Welcome to Swarm Pwnage!

31

4
4

4
4

4
4

4
5

4
4

4
6

32

So Far: Build System Breakout

o We looked at one particular aspect

o Raising awareness for capabilities of the
Docker socket

o Good summary: blog.heroku.com

https://blog.heroku.com/exploration-of-security-when-building-docker-containers

33

More Security Challenges

o Build System Breakout

o Traversing to Production Swarm

o Breakout on Production Swarm

o Deployment of Vulnerable Code to Production

o Registry Overwrite

o Leaking of Secrets

34

Build System Breakout

o Inherent problem of the requirement to build
docker containers in build containers

o Only configuration-based review of drone.io,
Travis, and Jenkins, but most likely the same
issues

o Potential Solution:

o Verify Build Scripts

o Build System Zoning

o Docker Image Build Without Docker

35

Docker Image Build Without Docker

o Several projects available

o https://github.com/genuinetools/img

o https://bazel.build/

o https://github.com/projectatomic/buildah

o Need to build a custom build
image/runner/plugin

https://github.com/genuinetools/img
https://bazel.build/
https://github.com/projectatomic/buildah

36

Build System Breakout –
Lateral Movement

o Common approach: Build system deploys to
production platform

o If so:

o Credentials can be accessed after breakout

o Lateral Movement to target systems

37

Breakout on Production Swarm

o Container breakout vulnerabilities are
relevant

o Cluster escalation vulnerabilities are
relevant

o Not the scope here!

o Refer to H2HC 2017 – Pentesting DevOps

https://github.com/h2hconference/2017

38

Breakout on Production Swarm

o In scope: Deploying privileged container
o Docker: privileged: true in compose file

o Kubernetes: privileged flag in deployment

yml

o No proper way to restrict container runtime
options on a cluster level

39

DoS on Production Swarm

o Binding container to relevant (host) port

o docker service create -p 22:22

IMAGE …

o Potential Solution for both DoS/Breakout:

o Deployment Verification

40

Deployment of Vulnerable Images

o Probably the most popular “Secure Pipeline”
aspect

o Possibility has existed longer than
containers/DevOps/CD

o Still a very important aspect

41

Deployment of Vulnerable Images

o Challenge: Scan all of

o OS packages

o App code

o App dependencies

o But again:

o Build Verification Required

42

Registry Overwrite

o Build System must be able to push to
registry

o Broad registry push access allows to
overwrite images

o => Review your registry
user/role/permission concept!

43

Leaking of Secrets

o Builds (and thus repositories) must contain
secrets on a regular basis

o For example:

o Registry login credentials

o Credentials for application stack

o Secrets in a repository are a bad idea ;-)

44

Secret Injection

o All major build systems support secret injection
of some kind
o docker login -u gitlab-ci-token -p

$CI_BUILD_TOKEN $DOCKER_REGISTRY

o Ensure usage!
o Scan repos for secret storage

o Various tools available

o Support developers

o Awareness

o Provide .gitignore/commit hook configs

45

Validate Builds & Deployments

o We saw the need for validation to address

o Build Breakout

o App/Image Vulnerabilities

o Deployment Mal-/Mis-Configuration

o How to enforce validation?

o Build Systems don’t provide mandatory
check steps without “manual work”…

46

Architecture Overview

47

What do we want to scan for?

o Application Vulnerabilities

o OS Package and Library Vulnerabilities

o Build Script Breakout

o As always, hard to detect.

o Docker-less builds essential

o Deployment Mal-/Mis-Configuration

48

What do we want to scan for?

o Deployment Mal-/Mis-Configuration

o Capabilities

o AppArmor/seccomp profile deactivation

o Container running as root

o Secrets

o Network policies

o Namespace sharing

o Mount propagation/Volumes

o See CIS Docker/K8s benchmarks as well.

49

Tooling?

o Some “Container Security” tools/scanners
start to provide the above.

o … some really do not.

o No tool recommendation here, no extensive
technical evaluation performed.

o The slides above provide your evaluation
checklist

50

Security Zoning

o Captain Security’s favorite approach:

o Use dedicated environments per application project/stack/team.

o Basically remove multi-tenancy from the vulnerability list

o We saw above how easy it is to deploy the complete
infrastructure.

o Granularity of zoning depends on your environment.

o E.g. according to business unites, protection need/classification, …

51

Network Isolation

o Old controls still relevant in the old world

o Build system/production swarm only needs filtered outbound
network access

o Proxy-based whitelisting

o Very feasible!

o Of course no prevention, but raising the bar.

52

Empower & Collaborate

o As a security team, provide
o Training in the new CD approaches

o Repository scaffolding

o Commit hooks including checks for included
secrets

o .gitignore

o .gitlab-ci.yml including all scanning
checks

o Provide scanning checks as well ;-)

o Container security policies (e.g. K8s Pod Security
Policies) available in the cluster

53

Empower & Collaborate

o If implemented properly and securely:

o Immutable infrastructures are immutable

o And easy to baseline!

o Executable and version-able
infrastructure/design documentation

o Automated security checks

o Timely patching

o Centralized secret management

54

Summary

o Practical demo of a functional CD pipeline

o Including war stories from production

o Not just some marketing slides of distant blog
posts from some .io startup.

o Illustration of multi-tenancy issues

o Limitations of build systems when it comes
to mandatory checks

55

Summary

o Focus on technical aspects

o Short touch on awareness/motivation via
belts/guilds

o Extending CD security aspects beyond
“integrate a source code scanner”

o CD provides awesome possibilities to
improve security!

56

www.stocard.de
www.ernw.de

www.insinuator.net

Questions?

Thank you for your attention!

barth@stocard.de

mluft@ernw.de

@der_cthulhu
@uchi_mata

https://www.ernw.de/
https://www.insinuator.net/
mailto:barth@stocard.de
mailto:mluft@ernw.de
https://twitter.com/der_cthulhu
https://twitter.com/uchi_mata

57

Shoutouts

o Simon who built a lot of basic infrastructure
that was (re-) used in this talk!

5858

Disclaimer

o All trademarks, product names, company name, publisher name
and their respective logos/images/media cited herein are the
property of their respective owners.

