

• Joe Slowik, Threat Intelligence & Hunter
• Current: Dragos Adversary Hunter
• Previous:

• Los Alamos National Lab: IR Lead
• US Navy: Information Warfare Officer
• University of Chicago: Philosophy Drop-Out

• Network vs. Host Visibility
• Network to Capture Host

• Bro
• YARA

• Use-Cases & Examples
• Limitations

• Host-based monitoring is vital but often less
mature

• Network-based monitoring more likely but
incomplete

• Best answer is ‘both’ in support of one
another

• Visibility challenges differ by environment
type

• Example: Large Windows Domain vs. ICS
Network

• Different challenges – but also opportunities

• Host: ‘higher fidelity’, ground truth – but
difficult to push out, manage

• Network: easier to implement, more
centralized, but leaves out some details

• Network visibility can be leveraged to see
elements of host activity:
• Files moving across the wire
• Commands via visible protocols

• Even if clear-text unavailable, sufficient data
can be gleaned to inform investigation

• If host is inaccessible, leverage network
• Data, commands, etc. must come from

somewhere to execute, control, etc.
• Key: identifying and parsing traffic

Adversary

• External C2

• Internal
Compromised
Host

Network
Choke Point

• Inter- or Intra-
Network

• Monitor &
Capture

Target
• Commands

• 2nd Stage

• Etc.

• Bro = open-source network
traffic analyzer

• Enables session-level
analysis rather than packet

• Developed at LBNL – w00t DOE
• Continued development adds functionality

• Bro automates file-carving from traffic
• Better than manually parsing from PCAP

• Applies to various protocols – most
significant limitation is encryption
• We will come back to this point

##! Extract all files to disk.

@load base/files/extract

event file_new(f: fa_file)

{

Files::add_analyzer(f, Files::ANALYZER_EXTRACT);

}

https://github.com/hosom/file-extraction/blob/master/scripts/plugins/extract-all-files.bro

@load base/files/extract

@load base/files/hash

redef FileExtract::prefix = "./";

global test_file_analysis_source: string = "" &redef;

global test_file_analyzers: set[Files::Tag];

global test_get_file_name: function(f: fa_file): string = function(f: fa_file): string { return ""; }

&redef;

global test_print_file_data_events: bool = F &redef;

global file_count: count = 0;

global file_map: table[string] of count;

function canonical_file_name(f: fa_file): string

{

return fmt("file #%d", file_map[f$id]);

}

event file_chunk(f: fa_file, data: string, off: count)

{

if (test_print_file_data_events)

print "file_chunk", canonical_file_name(f), |data|, off, data;

}

To be Continued!

• Simply carving files and checking hashes
against ‘dirty lists’ = pointless

• BUT – paired with analysis engine, very
valuable:
• Sandbox
• YARA
• Detection Scripts

• Pull files from anything Bro has an analyzer
for:
• HTTP
• SMB
• FTP

• If Bro can see it, you can grab it

Traffic Captured, Items Carved

Initial Filter, Items of Interest Pass
to Analysis Engine

Leverage Tools in Engine to
Identify Malicious Activity

• YARA:
• Malware detection
• Potential DLP/exfiltration monitoring

• Detection Scripts:
• Unpack and examine Office Macros
• PowerShell, WMI, and other scripting

language detectors

• YARA = awesomesauce
• Flexible, powerful means of analyzing any

filetype – strings and binary content

rule embedded_psexec{

meta:

description = "Look for indications of embedded psexec"

author = "Dragos Inc"

strings:

$mz = "!This program cannot be run in DOS mode." ascii wide

$s1 = "-accepteula -s" ascii wide

$s2 = ",Sysinternals" ascii wide

condition:

all of ($s*) and #mz > 1}

rule shutdown_scheduling{

meta:

description = "Shutdown scheduling"

author = "Dragos Inc"

strings:

$s1 = { 68 44 43 01 10 8d 85 d8 f9 ff ff 50 ff 15 1c d2 00 10 85 c0 74 }

$s2 = { f6 05 44 f1 01 10 04 b8 6c 43 01 10 75 05 }

$s3 = { 56 57 8d 8d ?? ?? ?? ff 51 50 8d 85 ?? ?? ?? ff 68 a8 42 01 10 }

condition:

all of ($s*)}

rule olympic_destroyer_service_manipulator

{

meta:

description = “Service manipulator functionality"

author = "Joe Slowik, Dragos Inc"

sha256 =

"ae9a4e244a9b3c77d489dee8aeaf35a7c3ba31b210e76d81ef2e91790f052c85"

strings:

$a = { 55 8B EC 83 EC 28 56 68 00 00 00 80 68 ?? ?? ?? 00 33 F6 56 FF 15

?? ?? 40 00 89 ?? ?? 3B C6 0F ?? ?? ?? ?? 00 53 8B ?? ?? ?? ?? 00 57 8D ?? ?? 51 8D ?? ?? 51

8D ?? ?? 51 56 56 6A 03 68 3F 01 00 00 50 89 ?? ?? 89 ?? ?? 89 ?? ?? FF ?? FF ?? ?? 8B ?? ??

?? ?? 00 6A 08 FF ?? 50 FF ?? ?? ?? 40 00 8D ?? ?? 51 8D ?? ?? 51 8D ?? ?? 51 FF ?? ?? 89 ??

?? 50 6A 03 68 3F 01 00 00 }

$b = { 8B ?? ?? 68 00 00 00 10 FF ?? FF ?? ?? FF ?? ?? ?? 40 00 89 ?? ??

3B C6 74 ?? 8D ?? ?? 51 56 56 50 89 ?? ?? FF ?? FF ?? ?? 6A 08 FF ?? 50 FF ?? ?? ?? 40 00 56

56 56 56 56 56 56 6A FF 6A 04 6A FF FF ?? ?? 89 ?? ?? FF ?? ?? ?? 40 00 8D ?? ?? 50 FF ?? ??

FF ?? ?? FF ?? ?? FF D3 85 C0 }

condition:

uint16(0) == 0x5a4d and all of them

}

• Host-relevant artifacts pulled down via Bro
• Sort, process, etc. via scripts or whatever is

appropriate
• Leverage YARA to look for activity of interest
• Includes YARA at end of processing scripts

• Sensors in place, scripts set up, etc.
• So – what can you actually look for that

makes up for lack of host detection?

• Answer: depends!
• Environment dictates what you can see, and

what you’ll need to
• Example environment: ICS
• AV coverage spotty
• Host coverage VERY rare
• Network capture pretty good

• CRASHOVERRIDE:
• Modular malware framework
• Responsible for 2016 Ukraine power

outage
• Purpose-built ICS attack framework and

payload

Penetrate ICS
Network

Establish
Foothold

Enumerate
Systems &
Protocols

Deliver Attack

Everything prior to
attack takes time,
access, and work

Penetrate ICS
Network

Establish
Foothold

Enumerate
Systems &
Protocols

Deliver Attack

Goal: Identify staging and prepositioning!

EXEC xp_cmdshell 'net use L: \\X.X.X.X\C$ <Password>

/USER:<User>’

EXEC xp_cmdshell 'cscript C:\Delta\remote.vbs /s:X.X.X.X

/u:<Domain>\<User> /p:<Password> /t:-r move

C:\intel\imapi.txt C:\Intel\imapi.exe';

Function CopyFiles(RemoteMachine, Username, Password, SrcFile, DestFile)

WshNetwork.MapNetworkDrive "", "\\" & RemoteMachine & "\IPC$", false,

Username, Password

If Err.Number <> 0 Then

Wscript.StdOut.Write "Error: " & Err.Description

CopyFiles = 1

Exit Function

End If

DestFile = "\\" & RemoteMachine & "\" + Replace(DestFile, ":", "$")

Set File = FSO.GetFile(SrcFile)

File.Copy DestFile, True

WshNetwork.RemoveNetworkDrive "\\" & RemoteMachine & "\IPC$"

If Err.Number <> 0 Then

Wscript.StdOut.Write "Error: " & Err.Description

CopyFiles = 2

Exit Function

End If

CopyFiles = 0

End Function

• Leveraging ‘living off the land techniques’
• Net Use
• PSEXEC
• Wscript

• Leaves protocol trail – primarily SMB

• Capture file transfer activity
• Parse files, analyze for malicious intent
• Take advantage of adversary need to ‘drill

down’ into network

@load base/frameworks/files

@load ./main

module SMB;

export { ## Default file handle provider for SMB.

global get_file_handle: function(c: connection, is_orig: bool): string;

Default file describer for SMB.

global describe_file: function(f: fa_file): string;}

function get_file_handle(c: connection, is_orig: bool): string

{if (! (c$smb_state?$current_file &&

(csmb_statecurrent_file?$name ||

csmb_statecurrent_file?$path)))

{

TODO - figure out what are the cases where this happens.

return ""; }

To Be Continued!

• Custom ICS protocol implementation
frameworks

• Destructive module to impede restoration
• ‘Off the shelf’ items
• PSExec
• Mimikatz (packed)

• From an AV perspective, not much
• From an ICS-specific perspective, many

items in payload would have been
interesting

• Adding ‘custom’ detection midpoint would
identify payload prepositioning

rule crashoverride_configReader{

meta:

description = "CRASHOVERRIDE v1 Config File Parsing"

author = "Dragos Inc"

sha256 = "7907dd95c1d36cf3dc842a1bd804f0db511a0f68f4b3d382c23a3c974a383cad"

strings:

$s0 = { 68 e8 ?? ?? ?? 6a 00 e8 a3 ?? ?? ?? 8b f8 83 c4 ?8 }

$s1 = { 8a 10 3a 11 75 ?? 84 d2 74 12 }

$s2 = { 33 c0 eb ?? 1b c0 83 c8 ?? }

$s3 = { 85 c0 75 ?? 8d 95 ?? ?? ?? ?? 8b cf ?? ?? }

condition:

uint16(0) == 0x5a4d and all of them}

rule dragos_crashoverride_moduleStrings {

meta:

description = "IEC-104 Interaction Module Program Strings"

author = "Dragos Inc"

strings:

$s1 = "IEC-104 client: ip=%s; port=%s; ASDU=%u" nocase wide ascii

$s2 = " MSTR ->> SLV" nocase wide ascii

$s3 = " MSTR <<- SLV" nocase wide ascii

$s4 = "Unknown APDU format !!!" nocase wide ascii

$s5 = "iec104.log" nocase wide ascii

condition:

any of ($s*)

• Build detections around environment
• Implement them at network choke-points
• Detect suspicious items in advance of attack
• Malicious code must be brought into

environment
• Take advantage of attacker dependencies

• TRISIS:
• Third ICS-impacting malware
• First to target safety systems

• Establish backdoor to replace safety system
logic

Penetrate ICS
Network

Establish
Foothold

Enumerate
Systems &
Protocols

Deliver Attack

• Wait a minute – that looks just like
CRASHOVERRIDE!

• YES!
• Same dependencies to access ICS
• Similar challenges in establishing C2
• Attack requires moving attack payload

into network

• Malicious payload downloaded from
engineering workstation to target SIS

• Payloads and upload/inject program
(compiled Python) moved to workstation

• Similar principles hold:
• Add detection at chokepoints
• Look for items of interest traversing

• Leverage network visibility to catch items
otherwise only seen on host

• AV failed to pick out TRISIS
• But numerous items ‘strange’ to ICS would

allow for detection:
• Compiled Python EXE
• File headers and content for malicious

logic files outside of known
service/update times

rule compiledPython{

meta:

description = "Identify compiled Python objects - Should be rare to non-

existent in ICS environments”

author = "Dragos Inc."

strings:

$s1 = "PyImport_" nocase wide ascii

$s2 = "PyErr_" nocase wide ascii

$s3 = ".pyd" nocase wide ascii

$s4 = "py2exe" nocase wide ascii

$a1 = "cyberoam" nocase wide ascii fullword

$a2 = "plctalk" nocase wide ascii fullword

$a3 = "greenbow" nocase wide ascii fullword

$a4 = "mbnet" nocase wide ascii fullword

$a5 = "mbconnect" nocase wide ascii fullword

….

$a** = "trilog" nocase ascii wide fullword

condition:

uint16(0) == 0x5a4d and 2 of ($s*) and 1 of ($a*)}

• Basically ZERO visibility on SIS
• Leverage network capture to fill in (some)

blanks
• Look for items that either:
• Never belong
• Only appear during known, legit activity

• DYMALLOY is an ICS activity group targeting
North America, Europe, Turkey

• Superficial similarity to legacy DRAGONFLY
• Part of ICS intrusion: exfil HMI screenshots

Initial Access:

• Phishing

• Strategic website compromise

Deploy Implants:

• RATs: Karagany.B, Heriplor

• Backdoors: DorShel, Goodor

Information Collection

• Mimikatz integrated into broader credential capture tool

• Framework for harvesting documents, intelligence info

• Exfiltrate HMI screenshots for process and network information

• Screenshot activity in ICS environment is an
excellent alerting point

• Something that would not get picked up by
traditional security solutions

• Deploy Bro to carve image files, analyze to
determine file significance

ExifTool Version Number : 10.60

File Name : Windows7x64_TB-2018-01-12-20-00-08.png

Directory : .

File Size : 68 kB

File Modification Date/Time : 2018:01:12 20:00:08-07:00

File Access Date/Time : 2018:01:14 09:31:00-07:00

File Inode Change Date/Time : 2018:01:12 20:00:08-07:00

File Permissions : rw-------

File Type : PNG

File Type Extension : png

MIME Type : image/png

Image Width : 1280

Image Height : 1024

Bit Depth : 8

Color Type : RGB

Compression : Deflate/Inflate

Filter : Adaptive

Interlace : Noninterlaced

Image Size : 1280x1024

Megapixels : 1.3

Identify Image File
in Network Traffic

FROM ICS

Carve File via Bro
and Move to

Analysis Machine

Analyze EXIF Data
to See if Image Size

Matches Set of
Screen Resolutions

• YARA applied to EXIF results
• Pattern off of ‘common’ screen resolutions
• Leverage as alerting data point

• Ultimately, this
approach remains an
approximation

• Not a replacement for
host visibility

• Making the best of what
you have

• Encryption
• Compound File Types
• Lack of sensors
• ‘Flat’ network topology
• Reactive, not preventative

• Potentially the greatest issue
• Many threat actors moving to HTTPS
• Increasing use of encryption by default

• Not as applicable in some environments
• E.g., ICS remains rare for encrypted traffic

• SSL intercept
• Justifiable given shifting threat landscape
• But a tough sell

• Identifying host work-arounds if possible
• Yes, defeats purpose of this discussion
• Shifts conversation to lack of host visibility

• Host and application fingerprinting
• JA3 project
• https://github.com/salesforce/ja3

• Identify custom or anomalous encrypted
communications via system and application
fingerprint

https://github.com/salesforce/ja3

• This approach works REALLY WELL for
things like PE files

• Compound or archive types – not so much:
• Zip, RAR, etc.
• DOCX, XLSX, etc.

File Identified ‘On
the Wire’

Carved from Traffic,
Saved

Initial Script
Identifies

Compound by
MIME Type

Extract/Expand to
Temp Location

Run Appropriate
Analysis Scripts

#!/bin/bash

#Script for XML-type documents to unzip, scan with Yara, and look for

Phishery indicators (IP address)

yaraRules=$1

for f in *; do

mkdir tmp

7za x -otmp $f > /dev/null

yara $yaraRules -r tmp/ >> ${f}_yara.results

grep -oEr "\b([0-9]{1,3}\.){3}[0-9]{1,3}\b" tmp/ >>

${f}_grep.results

rm -R tmp

done

#Remove empty result files

find . -name "*.results" -size 0 -exec rm {} \;

• This is doable – just requires more effort
• Key is finding a sustainable workflow:
• Won’t overtax storage
• Keep processing requirements to min

• Network edge typically covered
• Covers C2, downloads, etc.

• Internal traffic – less so
• Needed to capture lateral movement

• Align coverage to choke-points as best as
possible

• Flat networks are BAD
• But they still exist

• Similar to sensor coverage issue but less
scope to ‘fix’

• Architecture item – hard to implement, but
once you do good things

• Method will tell you something bad
happened – or is happening

• Damage is done!

• You might be reacting – but quicker than
before

• Goal is to respond faster
• Picking off in network traffic means

identifying badness before it spreads from
‘poor coverage’ areas

• ICS networks are well-tailored to this
approach
• And it is also my day job

• HOWEVER – aspects of this can apply to
various other environments

• Purpose: apply what you can based on
YOUR problems

• In imperfect
situations, can still
improve security
posture

• Reducing response times can limit infections
• Identify activity earlier in attack chain

Initial
Intrusion

Gain
Persistence

Survey
Network

Identify
Objective

Deliver
Effect

Complete
Effect

