
Lazy-Mode RF OSINT and
Reverse Engineering

Marc Newlin | @marcnewlin | TROOPERS18

$(whoami)
● Red Team @ Snap

● Former Wireless Security Researcher @ Bastille Networks

● Wireless CVE’s in products from 21 vendors

I am lazy and
you can too

● Radios

● They aren’t as scary as they
might seem

● How to maximize laziness
when hacking them

● Making OSINT a little easier

Related talks
So You Want To Hack Radios @ Troopers18
● Matt Knight and Marc Newlin
● https://www.youtube.com/watch?v=OFRwqpH9zAQ

Radio Exploitation 101 @ HITB GSEC
● Matt Knight and Marc Newlin
● https://www.youtube.com/watch?v=UrVbN23zR9c

https://www.youtube.com/watch?v=OFRwqpH9zAQ
https://www.youtube.com/watch?v=UrVbN23zR9c&t=3s

What is a radio?
● Magic black-box

● Converts digital data into radio waves (TX)

● Converts radio waves into digital data (RX)

● Radios can be analog, but we only really care about digital radios

[Hardware|Software] Defined Radio
Hardware Defined Radio

● Purpose-built to speak a specific protocol

● Usually can’t deviate [much] from the
standard

● Logic is baked into silicon

● Easier to use than SDR

● Usually cheaper than SDR

Software Defined Radio

● Flexible radio front-end

● Raw RF samples get sent to the host
computer

● Highly reconfigurable

● Protocol logic is implemented in software

● Can get expensive

● More domain knowledge required

How can we use radios?
Hardware Defined Radio

● Talk to devices using standardized
protocols (WiFi, BT, etc)

● Talk to devices using proprietary protocols
but common RFICs (wireless peripherals,
etc)

● Talk to devices using undocumented
protocols, after you’ve reverse engineered
the protocol with an SDR, or gathered
sufficient OSINT

Software Defined Radio

● Talk to devices using standardized
protocols when an HDR isn’t available
(LoRa, ZigBee, etc)

● Perform PHY-layer attacks (jamming,
replay, sniffing, etc)

● Reverse engineer undocumented
protocols and devices

Be lazy, find vulns
1. Pick a target

2. Define your goals

3. Gather open-source intelligence

4. Acquire the right hardware/software tools

5. Find some vulns

Pick a target

What are “easier” targets?
● Low power devices designed to work for a long time on a single

battery/charge

○ low power == low complexity == [maybe] low security

● Inexpensive devices from lesser-known vendors

○ cheap components means simple RF PHY and [maybe] no encryption

● Devices using COTS RFICs

○ usually means good documentation about the RFICs

What are “harder” targets?
● Devices with no compatible (and accessible) HDR

● Devices that exceed the capabilities of your SDR

○ bandwidth

○ frequency

○ retune time

○ ADC resolution

● Devices with little or no OSINT findings

○ blind reversing requires a significant effort

Devices are built under constraints
● Component cost

● Engineering cost

● Desired features

● Power consumption

● People are more likely to use off the shelf RFICs than roll their own

● Application layer SDKs cut down on software/firmware engineering costs

Target 1: Garage Door Opener
Keyscan TR4

● Garage door opener

● Low power

● Long use on single battery

Target 2: Wireless Barcode Scanner
Netum NT-1698W

● 2.4GHz wireless barcode scanner

● Inexpensive (~$30 USD)

● Lesser-known vendor

Define your goals

Garage Door Opener Goals
● Open the garage door (without the given opener)

Wireless Barcode Scanner Goals
● Determine if the barcode scanner is functionally a keyboard

● Perform a keystroke injection attack

Gather OSINT

What do we actually need to learn about a device?

What do we actually need to learn about a device?
It depends on what your goals are

What do we actually need to learn about a device?
It depends on what your goals are

● For a simple replay attack, you might only need to know the frequency.

What do we actually need to learn about a device?
It depends on what your goals are

● For a simple replay attack, you might only need to know the frequency.

● For a sniffing attack, you might need to to understand the MAC layer.

What do we actually need to learn about a device?
It depends on what your goals are

● For a simple replay attack, you might only need to know the frequency.

● For a sniffing attack, you might need to to understand the MAC layer.

● If it uses an off-the-shelf RFIC, you likely won’t need to understand all the
details of the PHY (and maybe not the MAC either).

What do we actually need to learn about a device?
It depends on what your goals are

● For a simple replay attack, you might only need to know the frequency.

● For a sniffing attack, you might need to to understand the MAC layer.

● If it uses an off-the-shelf RFIC, you likely won’t need to understand all the
details of the PHY (and maybe not the MAC either).

● If it uses an unknown RFIC, you’ll probably need to reverse engineer the
PHY.

What are some good sources for RF OSINT?
● Regulatory filings (FCC)

● RFIC datasheets

● Standards documents

● Prior reverse-engineering work

● Marketing material

Federal Communications Commission (FCC)
● US regulatory body governing electromagnetic spectrum usage

● Usually relevant to non-US markets and devices

○ Vendors often use a single test lab to certify a device for multiple markets

○ FCC publishes verbose device RF information

FCC Certification Process
1. Device is manufactured

2. Test lab evaluates the device

3. Telecommunications certification body issues a grant of certification

4. Test report, application, and related exhibits published in FCC database

5. Some exhibits are confidential (temporarily or permanently)

Finding FCC Exhibits
● Lookup FCC ID @ https://www.fcc.gov/general/fcc-id-search-page
● Click on the ‘Detail’ link on the results page

https://www.fcc.gov/general/fcc-id-search-page

FCC Documentation
● Applications

● Test Reports

● Internal / External Photos

● User Manuals

● Schematics / Block Diagrams

● Operational Descriptions

FCC Application
● Frequency

● Transmit power

● Type of device (i.e. car key fob)

● Vendor information

● Test lab information

FCC Test Reports
● Does the device meet FCC guidelines?

○ Transmit power

○ Bandwidth

○ Frequencies

○ Duty cycle

● 2498 authorized test labs

● Each lab has one or more report formats

● Each lab provides a varying degree of detail

FCC Internal / External Photos
● Internal / external photos of a device

● Typically taken by the test lab

● No standardization means [potentially] questionable quality

○ Low-resolution images

○ Blurred images

○ Blacked-out chip markings

FCC Schematics
● Most vendors request permanent confidentiality on schematics

● More common with lesser known manufacturers

● When available, extremely useful to learn RFIC specifics

FCC Operational Descriptions and User Manuals
● Describes the device behavior in an undefined format

● Hit or miss, but potentially fruitful

● Some vendors include useful technical details

RFIC Datasheets
● It’s much easier to use an existing RFIC than to roll your own

● The engineers who build the <wireless device> needed documentation of the
RFIC(s) they used

● What documentation did they use?

● Are there existing open-source implementations of the PHY/MAC?

● Is there an available HDR dongle/shield?

Prior reverse-engineering work
● Has somebody already solved this problem?

● Did they release documentation? Code?

● Is it permissively licensed?

Garage Door Opener - FCC Search
FCC ID - ELVUT0A

Garage Door Opener - FCC Search Results

Garage Door Opener - FCC Exhibits

Garage Door Opener - Block Diagram

Garage Door Opener - The Google
Solved problem, thanks to:

● @samykamkar

● @andrewmohawk

● Many others

Wireless Barcode Scanner - FCC Search
● No FCC ID :(

Wireless Barcode Scanner - Google

Wireless Barcode Scanner - User Manual

Use the right tools

SDR Hardware
(some reasonably-priced devices)

RTL-SDR
● Receive only
● ~20 MHz - 1800 MHz tuning range
● ~2.4 MHz maximum sample rate
● ~$20 USD

HackRF
● Transmit and Receive (half-duplex)
● 1 MHz - 6 GHz tuning range
● 20 MHz maximum sample rate
● ~$300 USD

bladeRF x40
● Transmit and Receive (full-duplex)
● 300 MHz - 3.8 GHz tuning range
● 40 MHz maximum sample rate
● ~$420 USD

PlutoSDR
● Transmit and Receive (full-duplex)
● 325 MHz - 3.8 GHz tuning range
● 20 MHz maximum sample rate
● ~$100 USD

Open-Source SDR Software
(a small slice of a big ecosystem)

GNU Radio
● Open source SDR toolkit written in C/C++ and Python

● Large selection of signal processing libraries

● Hardware support for common SDR platforms

● Efficient prototyping

GNU Radio Companion
● Drag and drop

flow graph creator

● Quick and easy

Inspectrum
● Spectrum visualization and analysis tool

Universal Radio Hacker
● [Semi] automatic signal / protocol reversing tool

Some of my favorite HDR tools

CrazyRadio PA USB Dongle 2.4GHz GFSK

Logitech C-U0007 USB Dongle 2.4GHz GFSK

ADF7242 PMOD/SPI Module 2.4GHz GFSK/OOK, 802.15.4

Ubertooth USB Dongle Bluetooth

ApiMote 802.15.4

YARD Stick One Sub-1GHz FSK/OOK

Garage Door Opener - Tools / Next Steps
● YARD Stick One

● @samykamkar’s OpenSesame code

● @andrewmohawk’s RfCat scripts and guide

● Stand on the shoulders of giants, be lazy, and open the garage door

Wireless Barcode Scanner - Tools / Next Steps
● 2.4GHz-capable SDR + Inspectrum

○ Identify the four RF channels used by the barcode scanner

● 2.4GHz-capable SDR + Universal Radio Hacker

○ Auto-magically reverse engineer the packet format

○ Generate and transmit injection packets

The FCC website isn’t perfect
● It’s designed as a document retrieval system, not a search engine

● It can be cumbersome to navigate, especially on mobile

● It’s often bogged down and slow

How can we make this
easier?

<copy>

FCC equipment authorization
database

<copy>

FCC equipment authorization
database

<paste>

Elasticsearch

Introducing kitten.dog
● Yes, kitten.dog, because new TLDs are awesome

● DNS is propagating, so you may need to go to www.kitten.dog or
kitten-dog.appspot.com

Questions?
Marc Newlin | @marcnewlin

