Lazy-Mode RF OSINT and Reverse Engineering

Marc Newlin | @marcnewlin | TROOPERS18

\$(whoami)

- Red Team @ Snap
- Former Wireless Security Researcher @ Bastille Networks
- Wireless CVE's in products from 21 vendors

I am lazy and you can too

Radios

- They aren't as scary as they might seem
- How to maximize laziness when hacking them
- Making OSINT a little easier

Related talks

So You Want To Hack Radios @ Troopers18

- Matt Knight and Marc Newlin
- https://www.youtube.com/watch?v=OFRwqpH9zAQ

Radio Exploitation 101 @ HITB GSEC

- Matt Knight and Marc Newlin
- https://www.youtube.com/watch?v=UrVbN23zR9c

What is a radio?

- Magic black-box
- Converts digital data into radio waves (TX)
- Converts radio waves into digital data (RX)
- Radios **can** be analog, but we only really care about digital radios

[Hardware|Software] Defined Radio

Hardware Defined Radio

- Purpose-built to speak a specific protocol
- Usually can't deviate [much] from the standard
- Logic is baked into silicon
- Easier to use than SDR
- Usually cheaper than SDR

Software Defined Radio

- Flexible radio front-end
- Raw RF samples get sent to the host computer
- Highly reconfigurable
- Protocol logic is implemented in software
- Can get expensive
- More domain knowledge required

How can we use radios?

Hardware Defined Radio

- Talk to devices using standardized protocols (WiFi, BT, etc)
- Talk to devices using proprietary protocols but common RFICs (wireless peripherals, etc)
- Talk to devices using undocumented protocols, after you've reverse engineered the protocol with an SDR, or gathered sufficient OSINT

Software Defined Radio

- Talk to devices using standardized protocols when an HDR isn't available (LoRa, ZigBee, etc)
- Perform PHY-layer attacks (jamming, replay, sniffing, etc)
- Reverse engineer undocumented protocols and devices

Be lazy, find vulns

- 1. Pick a target
- 2. Define your goals
- 3. Gather open-source intelligence
- 4. Acquire the right hardware/software tools
- 5. Find some vulns

Pick a target

What are "easier" targets?

- Low power devices designed to work for a long time on a single battery/charge
 - low power == low complexity == [maybe] low security
- Inexpensive devices from lesser-known vendors
 - cheap components means simple RF PHY and [maybe] no encryption
- Devices using COTS RFICs
 - usually means good documentation about the RFICs

What are "harder" targets?

- Devices with no compatible (and accessible) HDR
- Devices that exceed the capabilities of your SDR
 - bandwidth
 - frequency
 - retune time
 - ADC resolution
- Devices with little or no OSINT findings
 - blind reversing requires a significant effort

Devices are built under constraints

- Component cost
- Engineering cost
- Desired features
- Power consumption
- People are more likely to use off the shelf RFICs than roll their own
- Application layer SDKs cut down on software/firmware engineering costs

Target 1: Garage Door Opener

Keyscan TR4

- Garage door opener
- Low power
- Long use on single battery

Target 2: Wireless Barcode Scanner

Netum NT-1698W

- 2.4GHz wireless barcode scanner
- Inexpensive (~\$30 USD)
- Lesser-known vendor

Define your goals

Garage Door Opener Goals

• Open the garage door (without the given opener)

Wireless Barcode Scanner Goals

- Determine if the barcode scanner is functionally a keyboard
- Perform a keystroke injection attack

Gather OSINT

It depends on what your goals are

• For a simple replay attack, you might only need to know the frequency.

- For a simple replay attack, you might only need to know the frequency.
- For a sniffing attack, you might need to to understand the MAC layer.

- For a simple replay attack, you might only need to know the frequency.
- For a sniffing attack, you might need to to understand the MAC layer.
- If it uses an off-the-shelf RFIC, you likely won't need to understand all the details of the PHY (and maybe not the MAC either).

- For a simple replay attack, you might only need to know the frequency.
- For a sniffing attack, you might need to to understand the MAC layer.
- If it uses an off-the-shelf RFIC, you likely won't need to understand all the details of the PHY (and maybe not the MAC either).
- If it uses an unknown RFIC, you'll probably need to reverse engineer the PHY.

What are some good sources for RF OSINT?

- Regulatory filings (FCC)
- RFIC datasheets
- Standards documents
- Prior reverse-engineering work
- Marketing material

Federal Communications Commission (FCC)

- US regulatory body governing electromagnetic spectrum usage
- Usually relevant to non-US markets and devices
 - Vendors often use a single test lab to certify a device for multiple markets
 - FCC publishes verbose device RF information

FCC Certification Process

- 1. Device is manufactured
- 2. Test lab evaluates the device
- 3. Telecommunications certification body issues a grant of certification
- 4. Test report, application, and related exhibits published in FCC database
- 5. Some exhibits are confidential (temporarily or permanently)

Finding FCC Exhibits

- Lookup FCC ID @ <u>https://www.fcc.gov/general/fcc-id-search-page</u>
- Click on the 'Detail' link on the results page

OET Exhibits List

10 Matches found for FCC ID JNZMR0054

View Attachment	Exhibit Type	Date Submitted to	FCC Display	Type Date Available
Confidentiality Request.pdf	Cover Letter(s)	12/11/2015	pdf	12/15/2015
Cover Letter - Agent Authorization.pdf	Cover Letter(s)	12/11/2015	pdf	12/15/2015
External Photos.pdf	External Photos	12/11/2015	pdf	05/10/2016
Label ID Label Location Information.pd	fID Label/Location Inf	0 12/11/2015	pdf	12/15/2015
Internal Photos.pdf	Internal Photos	12/11/2015	pdf	05/10/2016
RF Exposure Information (MPE).pdf	RF Exposure Info	12/11/2015	pdf	12/15/2015
Test Report.pdf	Test Report	12/11/2015	pdf	12/15/2015
Test Setup Photos.pdf	Test Setup Photos	12/11/2015	pdf	05/10/2016
User Manual (Statements).pdf	Users Manual	12/11/2015	pdf	05/10/2016
User Manual.pdf	Users Manual	12/11/2015	pdf	05/10/2016

FCC Documentation

- Applications
- Test Reports
- Internal / External Photos
- User Manuals
- Schematics / Block Diagrams
- Operational Descriptions

FCC Application

- Frequency
- Transmit power
- Type of device (i.e. car key fob)
- Vendor information
- Test lab information

FCC Test Reports

- Does the device meet FCC guidelines?
 - Transmit power
 - Bandwidth
 - Frequencies
 - Duty cycle
- 2498 authorized test labs
- Each lab has one or more report formats
- Each lab provides a varying degree of detail

FCC Internal / External Photos

- Internal / external photos of a device
- Typically taken by the test lab
- No standardization means [potentially] questionable quality
 - Low-resolution images
 - Blurred images
 - Blacked-out chip markings

FCC Schematics

- Most vendors request permanent confidentiality on schematics
- More common with lesser known manufacturers
- When available, extremely useful to learn RFIC specifics

FCC Operational Descriptions and User Manuals

- Describes the device behavior in an undefined format
- Hit or miss, but potentially fruitful
- Some vendors include useful technical details

RFIC Datasheets

- It's much easier to use an existing RFIC than to roll your own
- The engineers who build the <wireless device> needed documentation of the RFIC(s) they used
- What documentation did they use?
- Are there existing open-source implementations of the PHY/MAC?
- Is there an available HDR dongle/shield?

Prior reverse-engineering work

- Has somebody already solved this problem?
- Did they release documentation? Code?
- Is it permissively licensed?

Garage Door Opener - FCC Search

FCC ID - ELVUT0A

\leftrightarrow \rightarrow C \blacksquare Secure	https://apps.fcc.gov/oetcf/eas/reports/	GenericSear	rch.cfm
Federal Communications Commission			
Office of Engineering and	Technology		
OET Home Page	FCC > FCC E-filing > EAS > Authorization Search		
Filing Options Grantee Registration	Application Information:		•
Modify Grantee Information	Grantee Code:	ELV	(First three or five characters of FCCID)
Submit Correspondence	Product Code:	UTOA	Exact Match (Remaining characters of FCCID)
Renew Test Firm/Add Exhibits	Applicant Name:		
Test Firm Accrediting Body Login	Final Action Date Range (mm/dd/yyyy):		to
Return to 159 Form	Grant Comments:		
Add/Modify Grant Deferral Date	Application Purpose:		•
Change Short-Term Confidential Date	Software Defined Radios:		
	FCC Approved Applications Only		
Reports	TCB Approved Applications Only:		
Pending Application Status	Composite Applications Only:		
Authorization Search	Grant Note:	▼ &	Kew Grant Note Descriptions
Grantee Search	Test Firm		
Pending Grantee Search	Application Status:	All Granted	d Statuses
TCB Search			
Test Firms	Equipment Information:		
Test Firm Accrediting Bodies	Equipment Class:		T

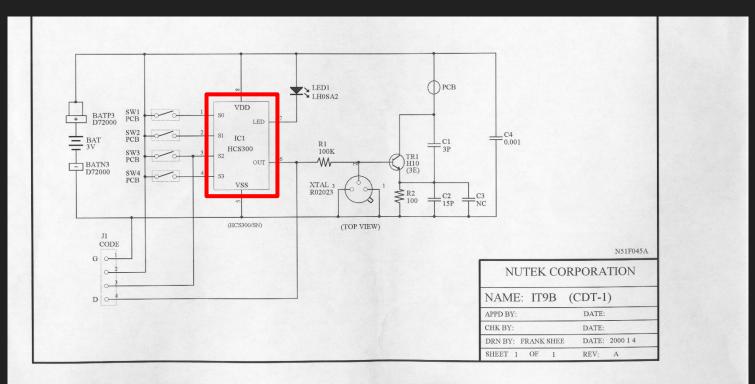
Garage Door Opener - FCC Search Results

1 results were found that match the search criteria: Grantee Code: ELV Product Code: UTOA

Displaying records 1 through 1 of 1.

View Form	Display Display Disp Exhibits Grant Corr onde		Address	<u>City</u>	State Country	<u>Zip</u> <u>Code</u>	FCC ID	Application Purpose		Lower Frequenc In MHz	Upper vFrequency In MHz
	Detail Summary	Nutek Corporation	No.167, Lane 235, Bauchiau Rd., Xindian District,	New Taipei City	N/A Taiwan	23145	ELVUTOA	Original Equipment	03/22/200	434.0	434.0

Perform Search Again


Garage Door Opener - FCC Exhibits

OET Exhibits List

9 Matches found for FCC ID ELVUTOA

View Attachment	Exhibit Type	Date Submitted to	FCC Display Ty	peDate Available
Block Diagram	Block Diagram	03/14/2000	native	03/22/2000
FCC Authorization Letter	Cover Letter(s)	03/14/2000	native	03/22/2000
External Photos	External Photos	03/14/2000	pdf	03/22/2000
FCC ID and Location	ID Label/Location Info	03/14/2000	pdf	03/22/2000
Internal Photos	Internal Photos	03/14/2000	pdf	03/22/2000
Test Report	Test Report	03/14/2000	pdf	03/22/2000
Radiation Data	Test Report	03/14/2000	pdf	03/22/2000
Plots	Test Report	03/14/2000	pdf	03/22/2000
Users Manual	Users Manual	03/14/2000	pdf	03/22/2000

Garage Door Opener - Block Diagram

Garage Door Opener - The Google

Solved problem, thanks to:

- @samykamkar
- @andrewmohawk
- Many others

hcs3	00 garage d	oor opene	r attack			ļ	Q
All	Shopping	Images	Videos	News	More	Settings	Tools

About 80 results (0,26 seconds)

Samy Kamkar - OpenSesame: hacking garages in seconds samy.pl/opensesame/ -

Jun 4, 2015 - is a device that can wirelessly open virtually any fixed-code garage door in seconds, exploiting a new attack I've discovered on wireless fixed-pin devices. Using a child's toy from For example, a 12-bit (12 binary dip switch) garage/remote supports 12 bits of possible combinations. This is essentially a ...

Bypassing Rolling Code Systems « AndrewNohawk

https://andrewmohawk.com/2016/02/05/bypassing-rolling-code-systems/

Feb 5, 2016 - This blog post will discuss the implementation of Codegrabbing / RollJam, just one method of **attacking** AM/OOK systems that implement rolling codes This is usually called "pairing" a **remote** and relies on some configuration of the device (car,garage,etc) such as pressing a button or using a 'master' key.

Wireless Barcode Scanner - FCC Search

• No FCC ID :(

Wireless Barcode Scanner - Google

nt-1698w filetype:pdf							, Q
AII	Images	Maps	Shopping	Videos	More	Settings	Tools
About	323 results	(0,19 secor	nds)				
DOUT	323 results	(U,19 Secor	ids)				
			tup - NETU		(20cotup%20ma	nual NT-1698 🔻	
	•					al range, you may acti	vate
-	-		-			y mode, all scanned o	
be sto	red directly i	nto the buff	er memory of th	he device. Fi	urthermore, the da	ta entries will be	
perma	anently saved	d in the					

Wireless Barcode Scanner - User Manual

2.4G Wireless Barcode Scanner Overview

Netum 2.4G wireless model integrates a high-performance processer with an effective decoding board, combining a fast decoding speed. High precision and a high anti-interference ability in one device. The device can easily read barcodes on paper and other surface.

This model can be both worked on wired and wireless mode.

7.Setting Channel

If there are several scanners used on the same environment, working channel need to be set for each scanner.

Steps

Scan channel 1, the scanner will have bee bee bee... sound.
 Pull out the receiver and plug again, the data can be uploaded in 5 secs later.

SRF#CH03 Channel 3

Channel 4

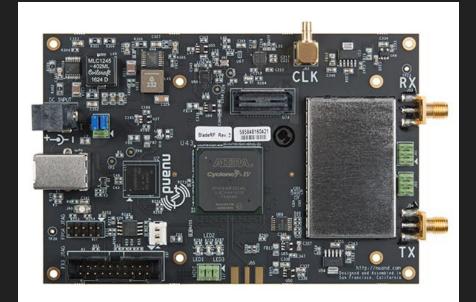
Use the right tools

SDR Hardware

(some reasonably-priced devices)

RTL-SDR

- Receive only
- ~20 MHz 1800 MHz tuning range
- ~2.4 MHz maximum sample rate
- ~\$20 USD


HackRF

- Transmit and Receive (half-duplex)
- 1 MHz 6 GHz tuning range
- 20 MHz maximum sample rate
- ~\$300 USD

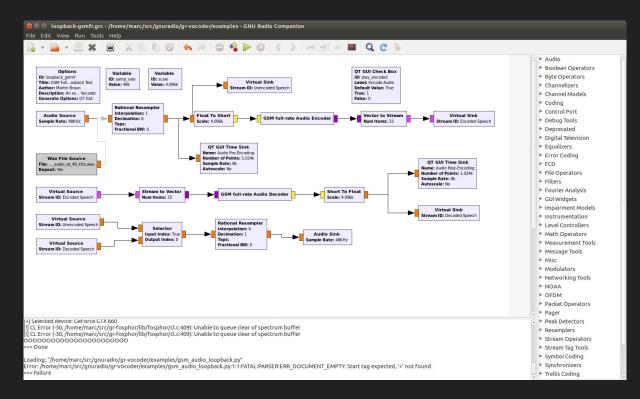
bladeRF x40

- Transmit and Receive (full-duplex)
- 300 MHz 3.8 GHz tuning range
- 40 MHz maximum sample rate
- ~\$420 USD

PlutoSDR

- Transmit and Receive (full-duplex)
- 325 MHz 3.8 GHz tuning range
- 20 MHz maximum sample rate
- ~\$100 USD

Open-Source SDR Software


(a small slice of a big ecosystem)

GNU Radio

- Open source SDR toolkit written in C/C++ and Python
- Large selection of signal processing libraries
- Hardware support for common SDR platforms
- Efficient prototyping

GNU Radio Companion

- Drag and drop flow graph creator
- Quick and easy

Inspectrum

• Spectrum visualization and analysis tool

			1 - W 100 - W	inspectrum: gqrx	20170328 213357 27175000 11520	00 fc.raw		• - 6 <u>×</u>
Controls	8 19	0.000000			1.000000		2.000000	
Ope	en file							
Sample rate:	5000000							
		100 kHz						
Spectrogram								
FFT size:								
Zoom:								
Scales:	8							
Time selection Enable cursors:	-							
	1	-100 kHz						
Rate:		-100 KHZ						
Period:								
Symbol rate: Symbol period:								
Symbol period.				And				
		•200 kHz						
		-300 kHz						
		-300 KHZ						
		-400 kHz						
		-						
		(4				1075		2

Universal Radio Hacker

• [Semi] automatic signal / protocol reversing tool

Filter) [Interpretation An	alysis Genera	ator		
Name	Size					
anlernen3x3.t. Backup.URHP. Boeser14er.c.	. 10 KB	1: Complex Signa		0		Y-Scale
decodings.txt	458 bytes	steckdose_anlerr	ien	_		
fernbedienun.	16,6 MB	Noise:	0.0111	\$		
gen.complex	86.4 MB	Center:	-0.0539	•		
old.tar.bz2	4 KB 19,9 MB 13 KB	Bit Length: Error Tolerance:	104	0		
protocol ke.tx			-			
protocol.proto	8 KB	Modulation:	FSK			
protocol.txt	9 KB 98,0 MB				2002 samples selected 2.00 ms	X-Zoom: 424195%
steckdose a.		Signal View:	analog	66	aaaaaa67686768ecc16de20f8c2844d97ad239735619b455caf2955bf9f [Pause: 13176 samples]	<u>^</u>
steckdose_anl tuersensor_an	19,1 MB	Autodete	ct parameters	88	aaaaaa <mark>07682</mark> 768fcfa7ds910d28 (Pause: 110039 samples) aaaaaa767687768b7168bc16d513db64bc6537ade5b6184c4baaa47132c6c3ba38 [Pause: 13682 samples] aaaaaaa76768675608816dc948fc244d7ad239249de1ff86dd7c5466c5c8ca37e7 [Pause: 12133 samples]	
tuersensor_an tuersensor_an	30,4 MB	Show Signal as	Hex		aaaaaa/obb/bb/bb/bb/bb/bb/bb/bb/bb/bb/bb/bb/bb	
tuersensor-an. tuersensor-an. tuersensor-an.	273 KB	2: Complex Signa	e 💿 💿	0	1. (†1)	Y-Scale
tuersensor-an.	156 KB	steckdose_anlerr	ien2			
URHProject.x versch_tage.t.		Noise:	0.0111	\$		
		Center:	0.0000	0		
		Bit Length:	100	\$		• •
		Error Tolerance:	5	\$		
		Modulation:	FSK	-	0 samples selected 0.00 ns	X-Zoom: 100%
		Signal View:	analog		u samples selected 0.00 ns 18181818181818181818181818181818181818	
		Autodete	ct parameters	81	0100111010000011111111010001110001101010	69691189108119189918981
		Show Signal as	Bits		18181818181818181818181818181818181818	

Participants: not assigned Alice (A) Bob (B)

Some of my favorite HDR tools

CrazyRadio PA USB Dongle	2.4GHz GFSK
Logitech C-U0007 USB Dongle	2.4GHz GFSK
ADF7242 PMOD/SPI Module	2.4GHz GFSK/OOK, 802.15.4
Ubertooth USB Dongle	Bluetooth
ApiMote	802.15.4
YARD Stick One	Sub-1GHz FSK/OOK

Garage Door Opener - Tools / Next Steps

- YARD Stick One
- @samykamkar's OpenSesame code
- @andrewmohawk's RfCat scripts and guide
- Stand on the shoulders of giants, be lazy, and open the garage door

Wireless Barcode Scanner - Tools / Next Steps

- 2.4GHz-capable SDR + Inspectrum
 - Identify the four RF channels used by the barcode scanner
- 2.4GHz-capable SDR + Universal Radio Hacker
 - Auto-magically reverse engineer the packet format
 - Generate and transmit injection packets

The FCC website isn't perfect

- It's designed as a document retrieval system, not a search engine
- It can be cumbersome to navigate, especially on mobile
- It's often bogged down and slow

How can we make this easier?

<copy>

FCC equipment authorization database

<copy>

FCC equipment authorization database

<paste>

Elasticsearch

Introducing kitten.dog

- Yes, kitten.dog, because new TLDs are awesome
- DNS is propagating, so you may need to go to www.kitten.dog or kitten-dog.appspot.com

Questions?

Marc Newlin | @marcnewlin