#### TEAM singiHAjin

- Hyejin Jeong
- Changhyeon Moon

# H(ack) DM

## CONTENTS

- Who am I?
- Introduction
- Previous Research
- HDMI protocols
- HDMI Fuzzer Design
- Fuzzing results

#### H(ack) DMI WHOAM !?

#### **SPEAKER INFO**



- Hyejin Jeong
  - KITRI BoB 7th vulnerability assessment track mentee
  - Soongsil University School of Software



- Changhyeon Moon
  - KITRI BoB 7th vulnerability assessment track mentee
  - Dong-A University
     Computer Engineering Dept.

#### H(ack) DMI WHOAM !?

## TEAM singiHAjin

#### 2 Mentors

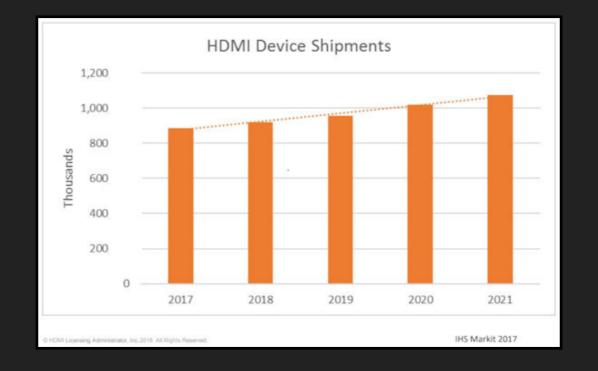
- ➡ Jeonghoon Shin @Theori
- ➡ Hongjin Kim @LG CNS

#### ▶ 1 PL

- ➡ Sanhwi Yang
- 5 Mentees
  - @Vulnerability Assessment Track
    - ➡ Hyejin Jeong
    - ➡ Changhyeon Moon
    - ➡ Hyewon Jo



- @Security Consulting Track
  - ➡ Sooyeon Jo
  - ➡ YangU Kim


#### WHAT IS HDMI?



- HDMI is provided for transmitting digital television audiovisual signals from DVD players, set-top boxes and other audiovisual sources to television sets, projectors and other video displays.
- HDMI can carry high quality multi-channel audio data and can carry all standard and high-definition consumer electronics video formats. Content protection technology is available.
- HDMI can also carry control, status and data information in both directions.

## WHY HDMI?

#### Usage of HDMI is high



- Various functions other than video transmission are provided
- Study of attack vector not considered well

## **PREVIOUS TALK**

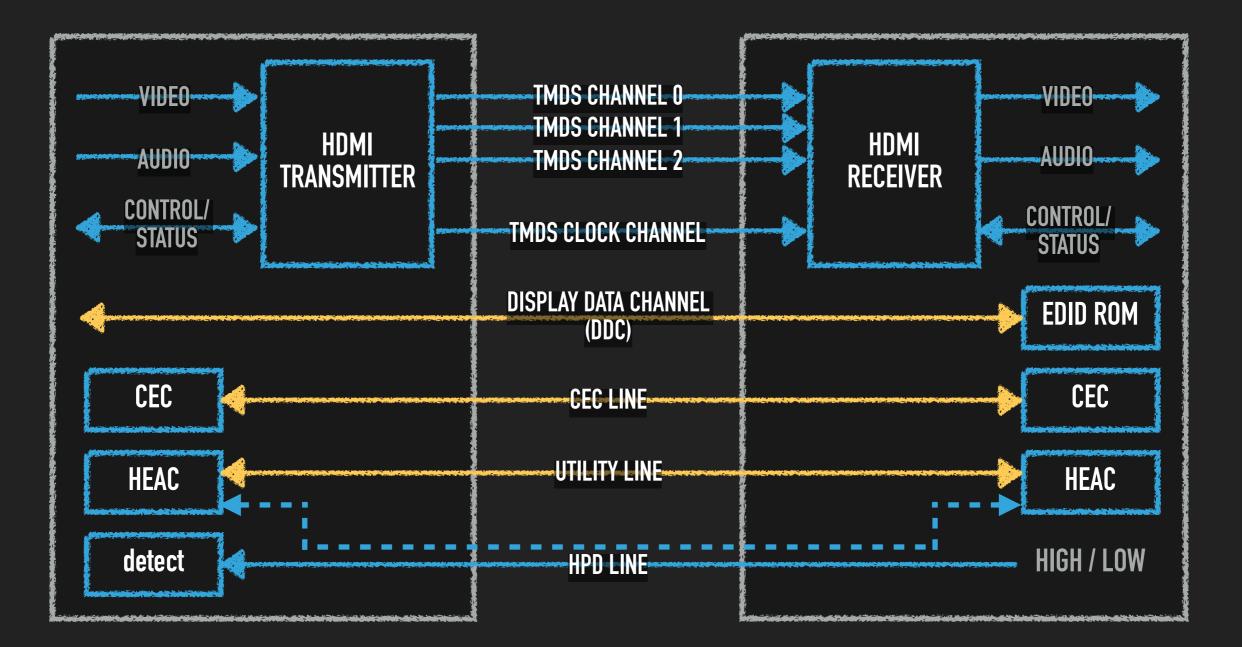
- Black Hat Europe 2012 Andy Davis
  - Hacking Displays Made Interesting
- 44CON 2012 Andy Davis
  - What the HEC? Security implications of HDMI Ethernet Channel and other related protocols
- Defcon23 (2015) Joshua Smith
  - ➡ High-Def Fuzzing: Exploring Vulnerabilities in HDMI-CEC

#### 1-DAY

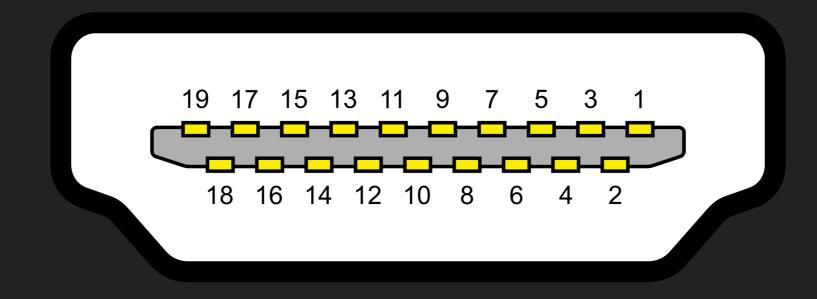
- HDMI CEC Protocol
  - CVE-2017-9689
    - ➡ HDMI CEC
    - Stack Memory Corruption
  - CVE-2017-9719
    - ➡ HDMI CEC
    - Stack Memory Corruption

- HDMI DDC Protocol
  - ► CVE-2017-9722
    - ➡ EDID
    - Memory Corruption

## HDMI PROTOCOL



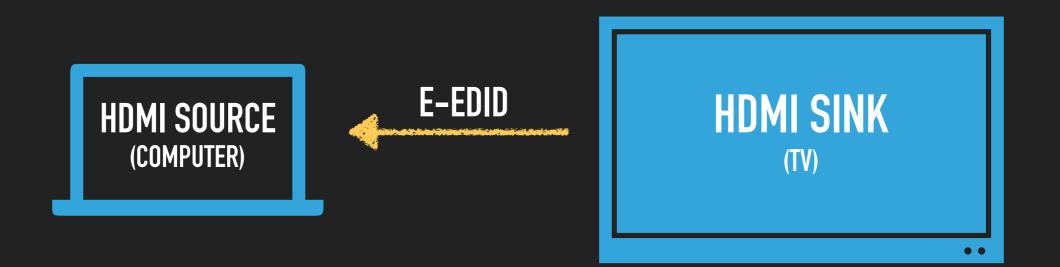

DDC
DDC
CEC
ARC


#### H(ack) DMI HDMI PROTOCOL

#### **HDMI Communications Channels**

▶ 4 separate channels: TMDS, DDC, and the optional CEC and HEAC.




#### **HDMI Communications Channels**



| 1 TMDS DATA2+              | 2 TMDS DATA2 Shield | <b>3 TMDS DATA2-</b>      | 4 TMDS DATA1+       |
|----------------------------|---------------------|---------------------------|---------------------|
| <b>5 TMDS DATA1 Shield</b> | 6 TMDS DATA1-       | 7 TMDS DATAO+             | 8 TMDS DATAO Shield |
| 9 TMDS DATAO-              | 10 TMDS Clock+      | 11 TMDS Clock Shield      | 12 TMDS Clock-      |
| <b>13 CEC</b>              | 14 Utility          | 15 SCL                    | 16 SDA              |
| <b>17</b> DDC/CEC Ground   | 18 +5V Power        | <b>19</b> Hot Plug Detect |                     |

### WHAT IS DDC?

- DDC stands for Display Data Channel.
- DDC is used by the HDMI Source to read Sink's E-EDID in order to discover the Sink's configuration and/or capabilities.



\*E-EDID(Enhanced Extended Display Identification Data), \* sink(A device with an HDMI input), source(A device with an HDMI output)

#### WHAT DATA DOES DDC SEND?

- EDID vs E-EDID
  - EDID: for PC monitors
  - E-EDID: extension of the EDID used to illustrate more advanced features
- E-EDID = EDID1.3 + first CEA Extension(CEA-861-D)

\*E-EDID(Enhanced Extended Display Identification Data), CEA Extensions: A 128 byte extension block designed to allow declaration of audio formats, additional video formats and other characteristics of the Sink.

## WHAT DATA DOES DDC SEND?

#### EDID 1.3

| 0-7   | Header                       |  |  |
|-------|------------------------------|--|--|
|       |                              |  |  |
| 21    | Horizontal Size(cm)          |  |  |
| 22    | Vertical Size(cm)            |  |  |
| 23    | Display Gamma                |  |  |
| 25-34 | <b>Color Characteristics</b> |  |  |
|       |                              |  |  |
| 126   | Extension Flag               |  |  |
| 127   | Checksum                     |  |  |

#### ► CEA-861-D

| O              | Always "2"                                                 |  |
|----------------|------------------------------------------------------------|--|
| 1              | Revision number                                            |  |
| 2              | Pointer to detailed timing<br>descriptors "d"              |  |
| 3              | Number of detailed timing<br>descriptors "n" (lower 4bits) |  |
| 4 to (d–1)     | CEA data block collection                                  |  |
| d to (d+18n–1) | Detailed Timing Descriptor                                 |  |
| (d+18n) to 126 | "O" padding                                                |  |
| 127            | Checksum                                                   |  |

## WHAT IS DDC?

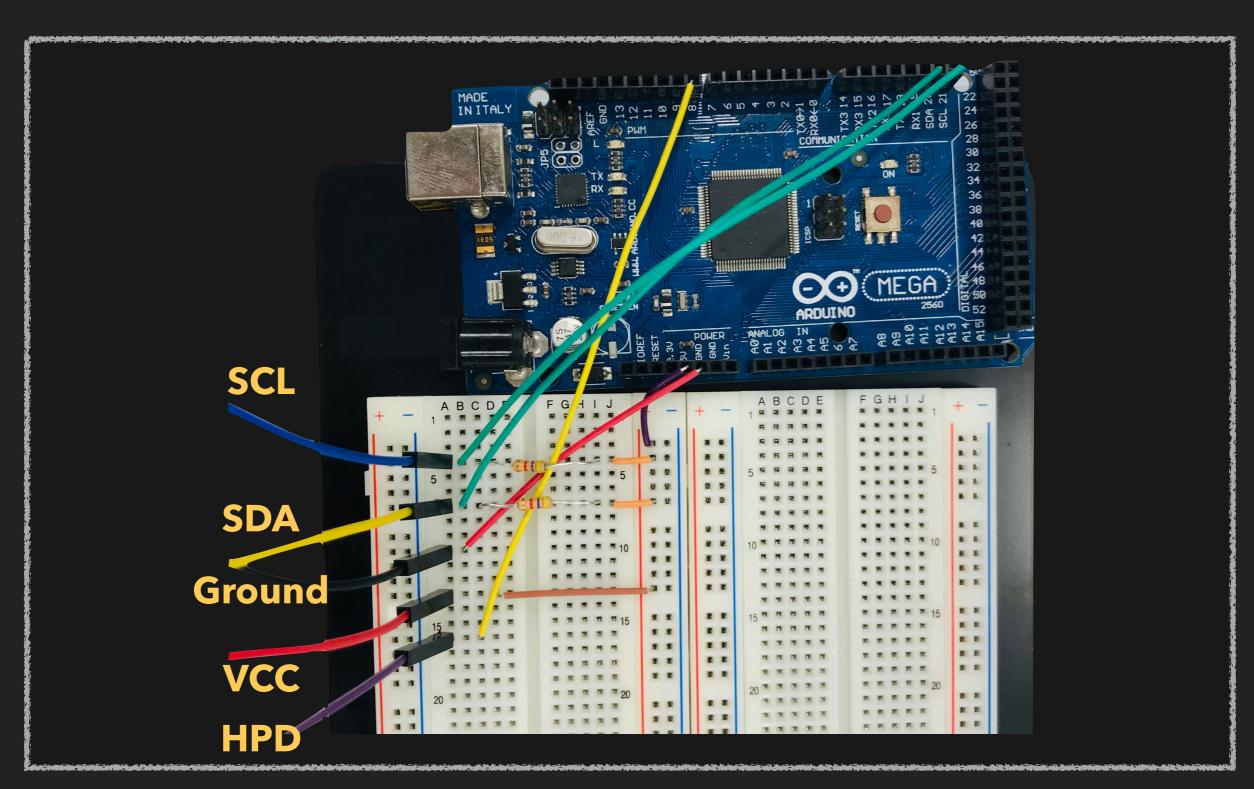
#### Windows

| 컴퓨터₩HKEY_L | OCAL_N | <b>ACHIN</b> | E₩SYST | EM₩Cur | rentCon | trolSet₩ | /Enum₩ | DISPLAY |
|------------|--------|--------------|--------|--------|---------|----------|--------|---------|
| 이진 값 편집    |        |              |        |        |         |          |        |         |
|            |        |              |        |        |         |          |        |         |
| 값 이름(N):   |        |              |        |        |         |          |        |         |
| EDID       |        |              |        |        |         |          |        |         |
| 값 데이터(V):  |        |              |        |        |         |          |        |         |
| 0000       | 00     | FF           | FF     | FF     | FF      | FF       | FF     | 00      |
| 0008       | 4C     | 2D           | 96     | ØB     | 01      | 00       | 00     | 00      |
| 0010       | 02     | 18           | 01     | 03     | 80      | 79       | 44     | 78      |
| 0018       | ØA     | EE           | 9D     | A3     | 54      | 47       | 99     | 26      |
| 0020       | ØF     | 47           | 4A     | BD     | EF      | 80       | 71     | 4F      |
| 0028       | 81     | C0           | 81     | 00     | 81      | 80       | 95     | 00      |
| 0030       | A9     | C0           | B3     | 00     | 01      | 01       | 02     | 3A      |
| 0038       | 80     | 18           | 71     | 38     | 2D      | 40       | 58     | 2C      |
| 0040       | 45     | 00           | 75     | F2     | 31      | 00       | 00     | 1E      |
| 0048       | 66     | 21           | 56     | AA     | 51      | 00       | 1E     | 30      |
| 0050       | 46     | 8F           | 33     | 00     | 75      | F2       | 31     | 00      |
| 0058       | 00     | 1E           | 00     | 00     | 00      | FD       | 00     | 18      |
| 0060       | 4B     | 1A           | 51     | 11     | 00      | ØA       | 20     | 20      |
| 0068       | 20     | 20           | 20     | 20     | 00      | 00       | 00     | FC      |

#### Ubuntu

| xxd /sys/o     | clas <mark>s</mark> / | /drm/( | card0∙ | - HDMI · | -A-1/e | edid |      |      |
|----------------|-----------------------|--------|--------|----------|--------|------|------|------|
| 00000000000000 | 00ff                  | ffff   | ffff   | ff00     | 4c2d   | 4a0c | 0000 | 0000 |
| 00000010:      | 2e18                  | 0103   | 803d   | 2378     | 0aee   | 91a3 | 544c | 9926 |
| 00000020:      | 0f50                  | 54bd   | ee00   | 81c0     | 0101   | 0101 | 0101 | 0101 |
| 00000030:      | 0101                  | 0101   | 0101   | 6621     | 56aa   | 5100 | 1e30 | 468f |
| 00000040:      | 3300                  | 615b   | 2100   | 001e     | 011d   | 0072 | 51d0 | 1e20 |
| 00000050:      | 6e28                  | 5500   | 615b   | 2100     | 001e   | 0000 | 00fd | 0018 |
| 00000060:      | 4b0f                  | 4417   | 000a   | 2020     | 2020   | 2020 | 0000 | 00fc |
| 00000070:      | 0053                  | 414d   | 5355   | 4e47     | 0a20   | 2020 | 2020 | 0106 |
| 00000080:      | 0203                  | 2bf1   | 4d84   | 1305     | 1403   | 1210 | 1f20 | 2122 |
| 00000090:      | 0716                  | 2909   | 0707   | 1507     | 503d   | 04c0 | 8301 | 0000 |
| 000000a0:      | e200                  | 0f67   | 030c   | 0010     | 00b8   | 2d01 | 1d80 | d072 |
| 000000b0:      | 1c16                  | 2010   | 2c25   | 8061     | 5b21   | 0000 | 9e01 | 1d80 |
| 000000c0:      | 1871                  | 1c16   | 2058   | 2c25     | 0061   | 5b21 | 0000 | 9e01 |
| :000000d0      | 1d00                  | bc52   | d01e   | 20b8     | 2855   | 4061 | 5b21 | 0000 |
| 000000e0:      | le8c                  | 0ad0   | 8a20   | e02d     | 1010   | 3e96 | 0061 | 5b21 |
| 000000f0:      | 0000                  | 1800   | 0000   | 0000     | 0000   | 0000 | 0000 | 00b6 |

#### macOS


"IODisplayEDID" = <00ffffffffffff004c2d4a0c00000002e180103803d23780aee91a3544c99260f5054bde e0081c001010101010101010101010101662156aa51001e30468f3300615b2100001e011d007251d01e206e285500615b2 100001e000000fd00184b0f4417000a202020202020000000fc0053414d53554e470a202020202020010602032bf14d8413051 40312101f2021220716290907071507503d04c083010000e2000f67030c001000b82d011d80d0721c1620102c2580615b210 0009e011d8018711c1620582c2500615b2100009e011d00bc52d01e20b8285540615b2100001e8c0ad08a20e02d10103e960 0615b21000018000000000000000000000b6>

## HOW TO SEND E-EDID DATA?

- I<sup>2</sup>C is a serial computer bus invented in 1982 by Philips Semiconductor(now NXP Semiconductors).
- It is widely used for attaching lower-speed peripheral ICs to processors and microcontrollers in short-distance, intra-board communication.
- I<sup>2</sup>C uses only two bidirectional open collector lines, SDA and SCL, pulled up with resistors. Typical voltages used are +5V or +3.3V, although systems with other voltages are permitted.
  - → SDA is the data line.
  - SCL is used to synchronize data transfer.

#### H(ack) DMI HDMI PROTOCOL – DDC

#### HOW TO SEND E-EDID DATA?



## HOW TO SEND E-EDID DATA?

Wire Library

→ allows you to communicate with I2C devices.

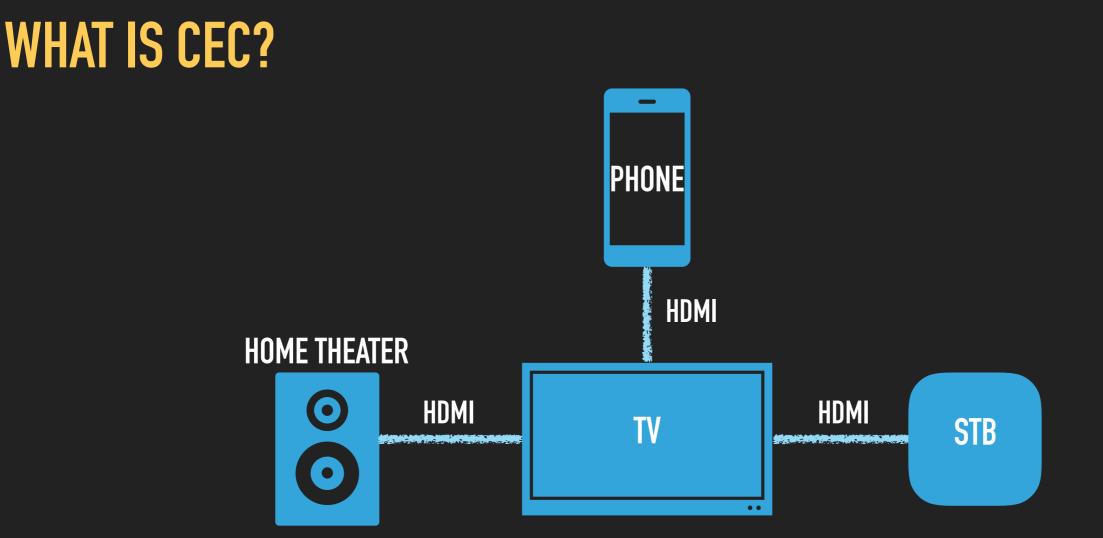
- uses a 32 byte buffer, therefore any communication should be within this limit. Exceeding bytes will just be dropped.
- Wire.begin(): Initiate and join the I2C bus as a master or slave.
- Wire.onRequest(), Wire.onReceive()
- Wire.read(), Wire.write()

## HOW TO SEND E-EDID DATA?

- Wire Library
  - uses a 32 byte buffer, therefore any communication should be within this limit. Exceeding bytes will just be dropped.

| Wire | e/src/Wire.h                                                      | Þ | Wire/src/utility/twi.h                                                |
|------|-------------------------------------------------------------------|---|-----------------------------------------------------------------------|
|      | <pre>#ifndef TwoWire_h #define TwoWire_h</pre>                    |   | <pre>#ifndef TWI_FREQ #define TWI_FREQ 100000L #endif</pre>           |
|      | <pre>#include <inttypes.h> #include "Stream.h"</inttypes.h></pre> |   | <pre>#ifndef TWI_BUFFER_LENGTH<br/>#define TWI_BUFFER_LENGTH 32</pre> |
|      | <pre>#define BUFFER_LENGTH 32</pre>                               |   | #endif                                                                |
|      |                                                                   |   |                                                                       |
|      | <b>128</b>                                                        |   | <b>128</b>                                                            |

#### H(ack) DMI HDMI PROTOCOL – DDC


## HOW TO SEND E-EDID DATA?

#### Wire Library

| ∞ ArduinoDDCFuzzer   아두이노 1.8.8                 | 2018-12-12 16:04:44 | [*] EDID_( |
|-------------------------------------------------|---------------------|------------|
| 파일 편집 스케치 툴 도움말                                 | 2018-12-12 16:04:44 | copy valu  |
|                                                 | 2018-12-12 16:04:44 |            |
|                                                 | 2018-12-12 16:04:44 | 0 FF FF F  |
|                                                 | 2018-12-12 16:04:44 | 2 18 1 3   |
| ArduinoDDCFuzzer §                              | 2018-12-12 16:04:44 | F 47 4A E  |
| <pre>pinMode(hotPlugDetectPin, OUTPUT);</pre>   | 2018-12-12 16:04:44 | A9 C0 B3   |
| <pre>digitalWrite(hotPlugDetectPin, LOW);</pre> | 2018-12-12 16:04:44 | 45 0 75 F  |
|                                                 | 2018-12-12 16:04:44 | 46 8F 33   |
| <pre>Wire.begin(EDID_SLAVE);</pre>              | 2018-12-12 16:04:44 | 4B 1A 51   |
|                                                 | 2018-12-12 16:04:44 | 0 53 79 6  |
| <pre>Wire.onReceive (receiveEvent);</pre>       |                     |            |
| Wire.onRequest (requestEvent);                  |                     |            |
|                                                 |                     |            |
| <pre>Serial.begin(9600);</pre>                  |                     |            |
|                                                 |                     |            |

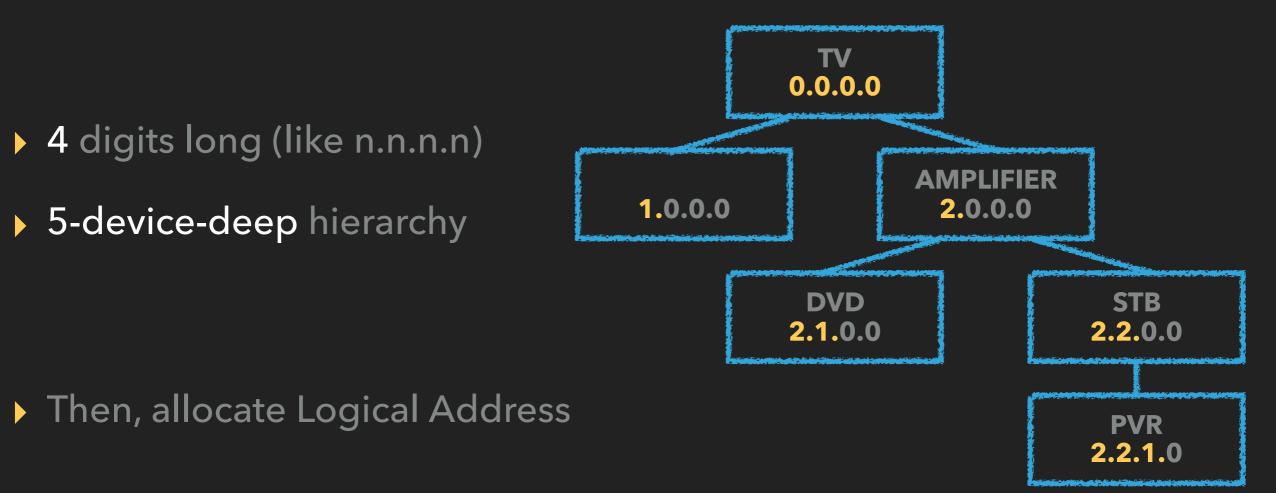
\*] EDID\_Change : Horizontal\_Image\_Size copy value

0 FF FF FF FF FF FF FF 0 4C 2D 96 B 1 0 0 0 2 18 1 3 80 9D 44 78 A EE 9D A3 54 47 99 26 F 47 4A BD EF 80 71 4F 81 C0 81 0 81 80 95 0 A9 C0 B3 0 1 1 2 3A 80 18 71 38 2D 40 58 2C 45 0 75 F2 31 0 0 1E 66 21 56 AA 51 0 1E 30 46 8F 33 0 75 F2 31 0 0 1E 0 0 0 FD 0 18 4B 1A 51 11 0 A 20 20 20 20 20 20 0 0 0 FC 0 53 79 6E 63 4D 61 73 74 65 72 A 20 20 1 41



- How many remote controls do you need to control the devices connected by HDMI?
- ▶ The answer is in the HDMI CEC protocol.

#### WHAT IS CEC?


- CEC is a protocol that provides high-level control functions between all of the various audiovisual products in a user's environment.
- CEC provides a number of features designed to enhance the functionality and interoperability of devices within an HDMI system.
- Anynet+(Samsung), EasyLink(Philips), EZ-Sync(Panasonic) rather than CEC can be more familiar.

| AOC: E-link        | Hitachi: HDMI-CEC | LG: SimpLink              | Loewe: Digital Link |
|--------------------|-------------------|---------------------------|---------------------|
| Panasonic: EZ-Sync | Philips: EasyLink | <b>Pioneer: Kuro Link</b> | Runco: RuncoLink    |
| Samsung: Anynet+   | Sharp: Aquos Link | Sony: BRAVIA Link         | Toshiba: CE-Link    |

\*CEC(Consumer Electronics Control)

## **PHYSICAL ADDRESS**

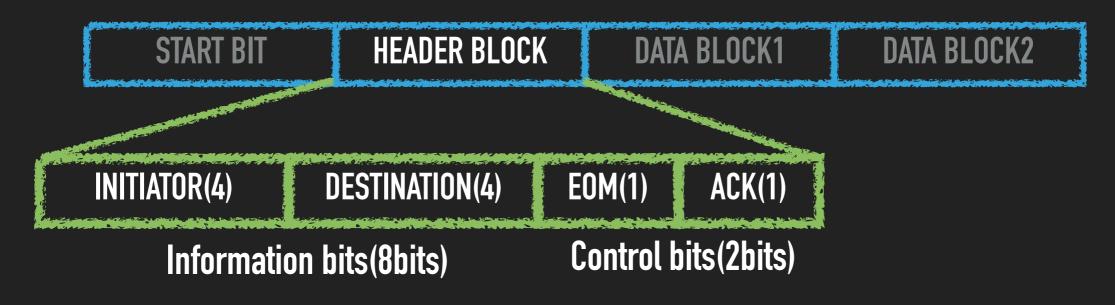
- Physical Address is allocated through the DDC protocol.
- CEC devices: have both a Physical and Logical Address
- non-CEC devices: only have a Physical Address.



## **LOGICAL ADDRESS**

#### Logical Address defines a device type

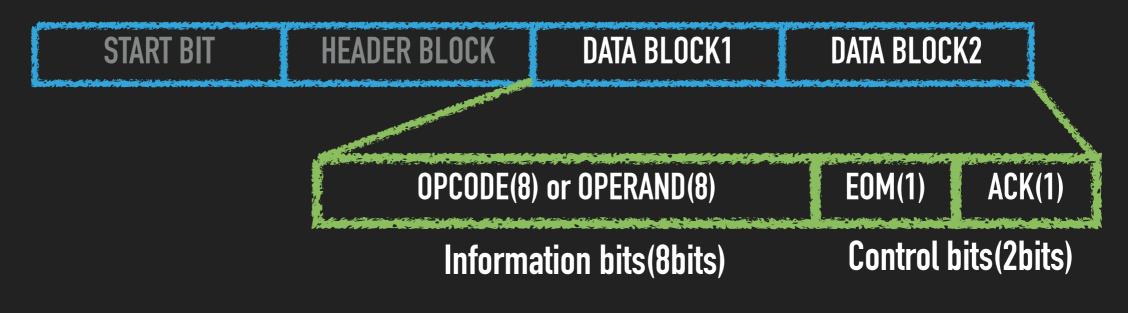
TV: 0 RECORDING DEVICE: 1, 2, 9 TUNER: 3, 6, 7, 10 PLAYBACK DEVICE: 4, 8, 11 ETC.


- Logical Address is allocated through Polling Message.
  - → 1. Takes first address and sends a polling message.
  - → 2. If Polling is acknowledged, takes the next address.
  - → 3. If not, stops the procedure and retains that address.

## **CEC MESSAGE FRAME**

| START BIT HEADER BLOCK | DATA BLOCK1<br>(OPCODE) | DATA BLOCK2<br>(OPERAND) |
|------------------------|-------------------------|--------------------------|
|------------------------|-------------------------|--------------------------|

- CEC message = Start bit + Header Block + Data Block(s)
  - → Start bit is a special bit which means start.
  - Header and Data block(10bits)
    - = information bits(8bits) + control bits(2bits).


### **CEC MESSAGE – HEADER BLOCK**



- Information bits
  - Initiator and Destination: logical address
- Control bits
  - → EOM: 0(1 or more Data Blocks follow), 1(message is complete)
  - → ACK: acknowledge the data or Header Block

\*EOM(End of Message), ACK(Acknowledge)

## CEC MESSAGE – DATA BLOCK (OPTIONAL)



- Data Block1: Opcode
  Data Block2: Operand
- > Operand is depending on Opcode.
  - ➡ ex) Opcode: Set Menu Language(0x32)
    - => Operand: the language you want to set.
- Maximum message size = 16 Blocks(160bits)
  - => Header(1 Block), Data Block1(0 or 1 Block), Data Block2(0 ~ 14 Blocks)

## HOW TO SEND CEC MESSAGE?

#### LibCEC

- USB CEC Adapter communication Library
- https://github.com/Pulse-Eight/libcec
- → Supported H/W
  - Pulse-Eight USB CEC Adapter
  - Raspberry Pi



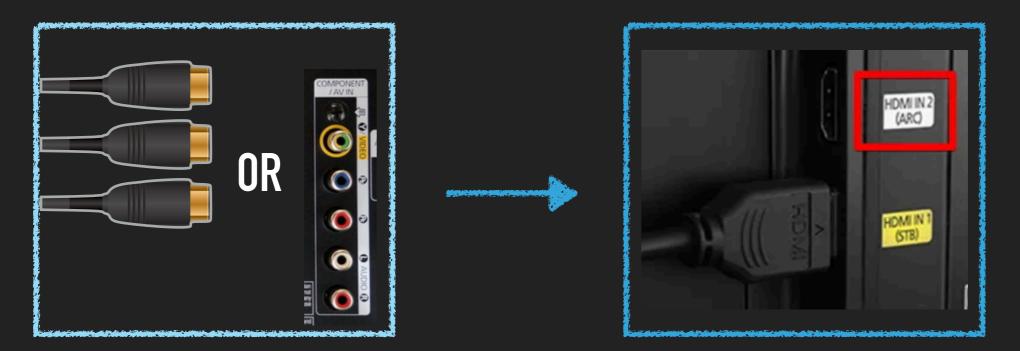


## HOW TO SEND CEC MESSAGE?

#### With libCEC

 But this library is so well made that it can drop our fuzzing data as well.

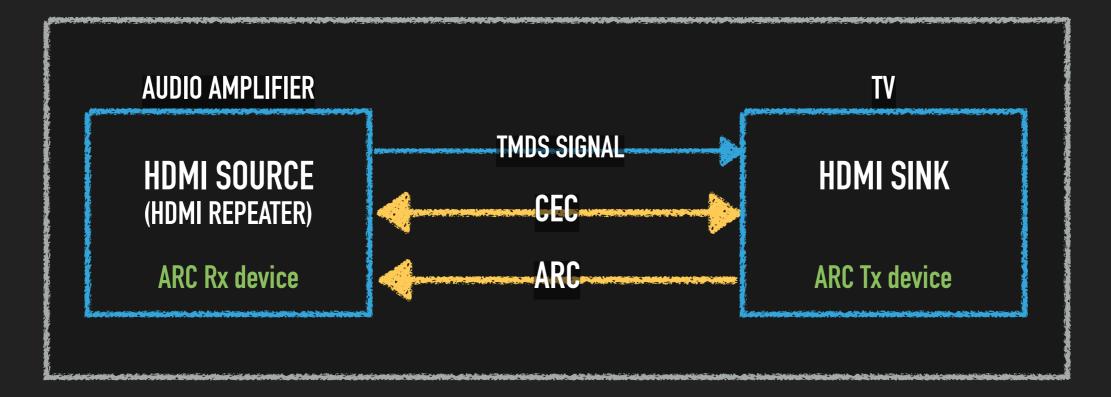
```
def MainLoop(self):
  runLoop = True
 while runLoop:
    command = raw_input("Enter command:").lower()
    if command == 'q' or command == 'quit':
      runLoop = False
    elif command == 'self':
      self.ProcessCommandSelf()
    elif command == 'as' or command == 'activesource':
      self.ProcessCommandActiveSource()
    elif command == 'standby':
      self.ProcessCommandStandby()
    elif command == 'scan':
      self.ProcessCommandScan()
    elif command[:2] == 'tx':
      self.ProcessCommandTx(command[3:])
  print('Exiting...')
```


https://github.com/Pulse-Eight/libcec

#### With pySerial (we will use it)

```
import serial
ser = serial.Serial('/dev/tty.usbmodemv1')
ser.write('\xff\x18\x01\xfe\xff\x0b\x14\xfe\xff\x0c\x36\xfe')
ser.close()
```

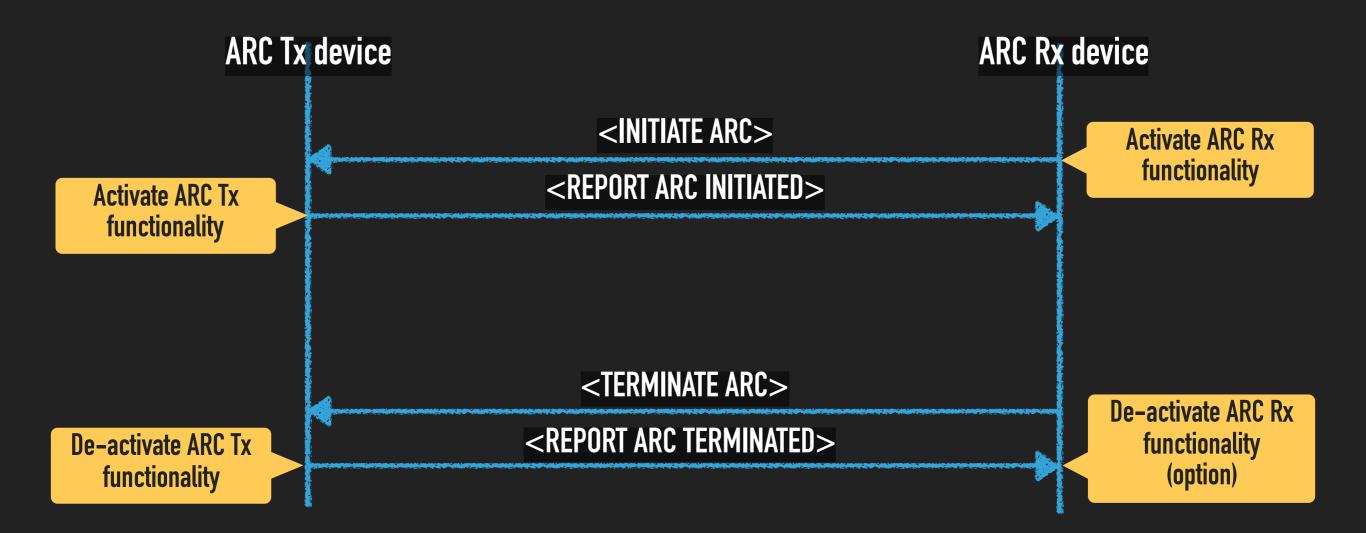
#### H(ack) DMI HDMI PROTOCOL – ARC


#### WHAT IS ARC?



- If you need an audio cable or several HDMI to use a home theater, another inconvenience arises.
- ARC protocol solved this inconvenience.
- If you have seen the word "ARC" on the back of your TV, you may already be benefiting from this protocol.

#### WHAT IS ARC?


 ARC function allows delivery of an audio signal from an HDMI Sink to an HDMI Source in the reverse direction to the TMDS signal.

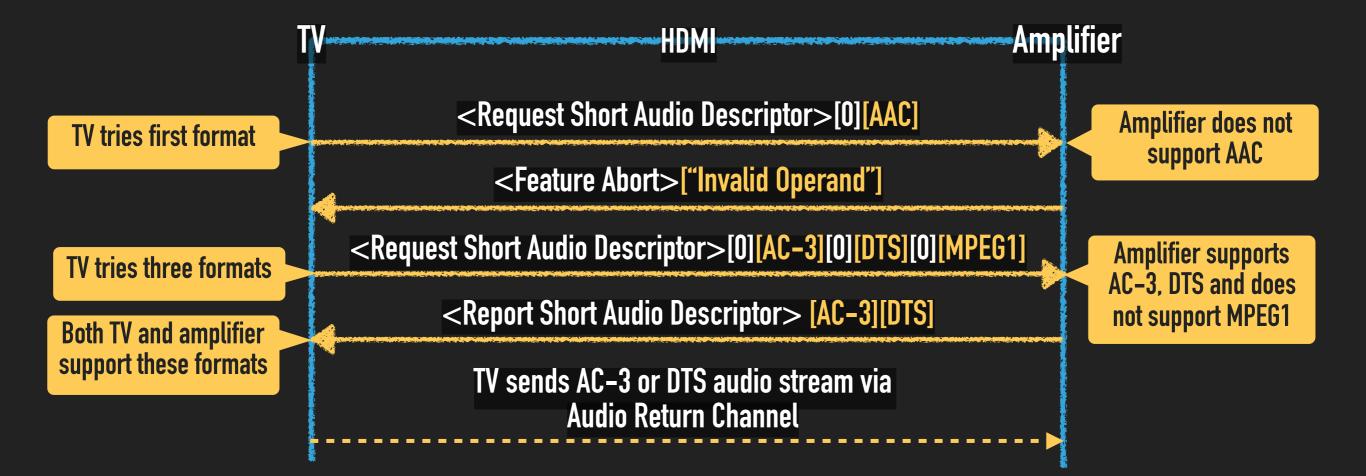


\*ARC(Audio Return Channel)

## HOW TO USE ARC?

In order to use the ARC feature, it is necessary to discover and control the capabilities of the devices in the respective paths, using CEC.




## HOW TO USE ARC?

In order to use the ARC feature, it is necessary to discover and control the capabilities of the devices in the respective paths, using CEC.



## **DISCOVER AUDIO FORMAT SUPPORT**

- When using the ARC, TV wants to find which audio formats are supported by Amplifier.
- It also done through the CEC.



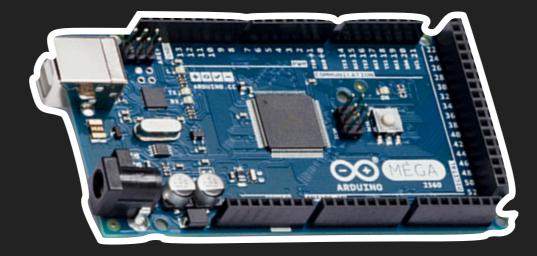
## HDMI FUZZER DESIGN




DDC
DDC
CEC
ARC

#### TARGET DEVICES

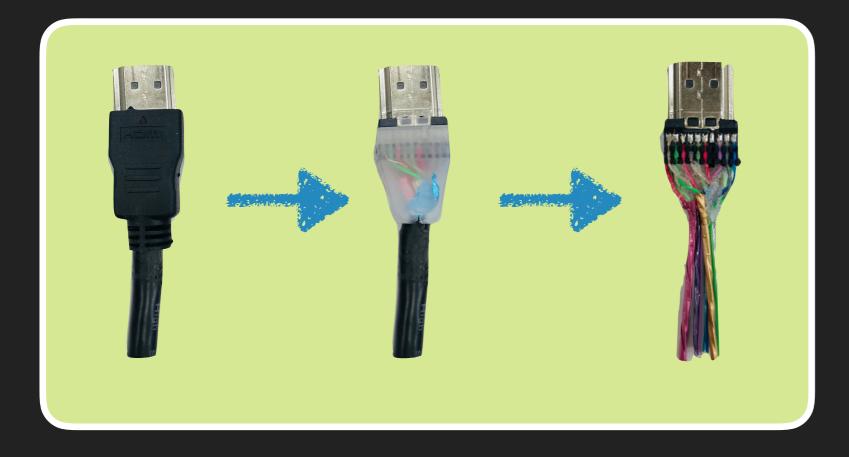



- HDMI Source devices can be your target.
  - Desktop or Laptop Computers
  - Set-top Box
  - ➡ Smartphone



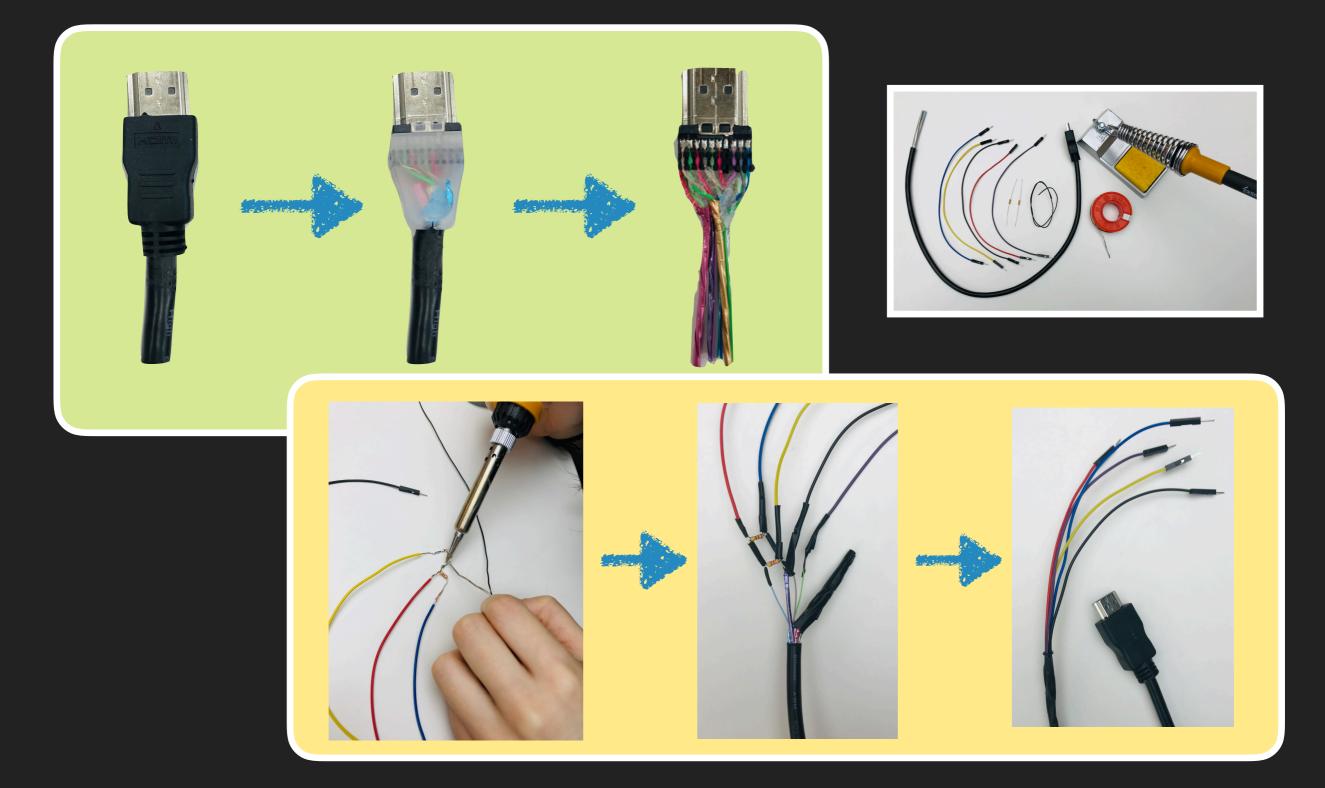
⇒ etc.

### PREREQUISITES


- Arduino MEGA2560
  - → Wire Library



We cut and soldered the HDMI cables for more reliable data transmission.


### H(ack) DMI HDMI FUZZER DESIGN – DDC

### PREREQUISITES



### H(ack) DMI HDMI FUZZER DESIGN – DDC

### PREREQUISITES



## HDMI FUZZER DESIGN – DDC

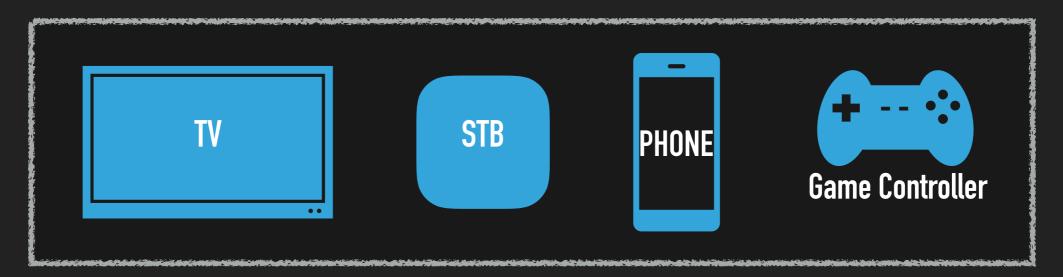
### EDID 1.3

| 0-7   | Header                       |
|-------|------------------------------|
|       |                              |
| 21    | Horizontal Size(cm)          |
| 22    | Vertical Size(cm)            |
| 23    | Display Gamma                |
| 25-34 | <b>Color Characteristics</b> |
|       |                              |
| 126   | Extension Flag               |
| 127   | Checksum                     |

### ► CEA-861-D

| O              | Always "2"                                                 |
|----------------|------------------------------------------------------------|
| 1              | <b>Revision number</b>                                     |
| 2              | Pointer to detailed timing<br>descriptors "d"              |
| 3              | Number of detailed timing<br>descriptors "n" (lower 4bits) |
| 4 to (d–1)     | CEA data block collection                                  |
| d to (d+18n–1) | Detailed Timing Descriptor                                 |
| (d+18n) to 126 | "O" padding                                                |
| 127            | Checksum                                                   |

### HDMI FUZZER DESIGN – DDC

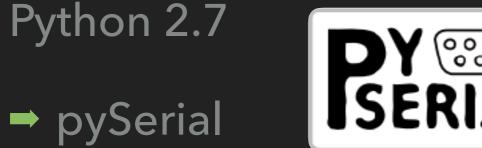

- Data to mutate
  - Each structure of EDID
  - Random among structures that are likely to cause vulnerabilities.
  - Random
- Mutation method
  - Bit flip, Swap, shift, etc.

### HDMI FUZZER DESIGN – DDC

- To fuzz through the HDMI cable, the process of connecting and disconnecting HDMI should be repeated.
- This is confirmed by the HPD signal.
- So we repeatedly send low and high to HPD pin, giving the same effect as connecting and disconnecting HDMI.

digitalWrite(hotPlugDetectPin, LOW); delay (10); digitalWrite(hotPlugDetectPin, HIGH);

### **TARGET DEVICES**




- Any devices that support CEC can be your target.
  - Smart TV, Beam Projector
  - Set-top Box, Blu-ray
  - Smartphone: Need to purchase additional converters(adapters).

### Game Controller

> Make sure that the product supports CEC rather than the type of device.

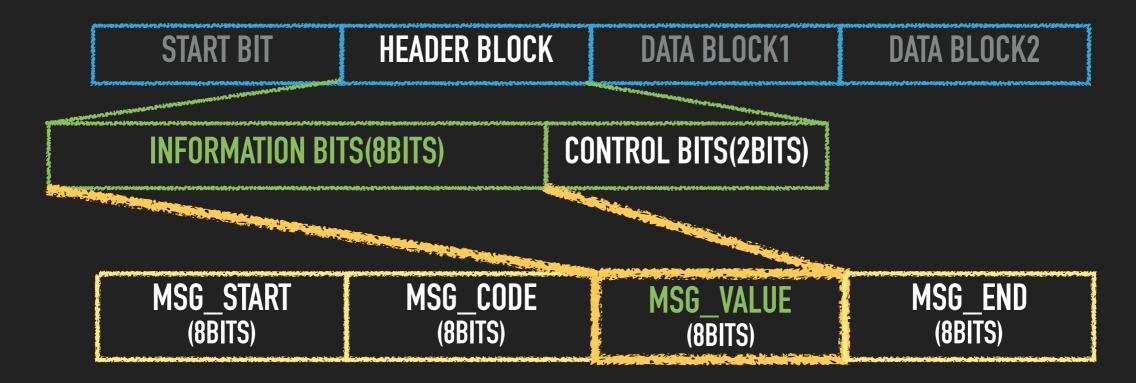
## **PREREQUISITES**





- Pulse-Eight USB CEC Adapter
- HDMI cable






### TO USE THE CEC ADAPTER

| START BIT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | HEADER BLOCK |  | DATA BLOCK1       | DATA BLOCK2 |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|--|-------------------|-------------|
| and the second |              |  |                   |             |
| <b>INFORMATION BI</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |              |  | NTROL BITS(2BITS) |             |

Do you remember the CEC message frame?

### TO USE THE CEC ADAPTER



- MSG\_START(\xff)
- MSG\_CODE => cec\_adapter\_messagecode(Control Bits)
- MSG\_VALUE => Information Bits

### FUZZING DATA (1) – OPCODE

- Iterate Opcode from '\x00' to '\xff'.
  - '\x36' was excluded because it is a opcode to power off the device.

```
msg = '\xff' + '\x18\x01' + '\xfe'
msg += '\xff' + '\x0e\x00' + '\xfe'
msg += '\xff' + '\x0b\x10' + '\xfe'
for opcode in range(256):
    # except power off opcode
    if(chr(opcode) == '\x36'):
        continue
    send_msg = msg + '\xff' + '\x0c' + chr(opcode) + '\xfe'
    self.ser.flushInput()
    self.SendMessage(send_msg)
```

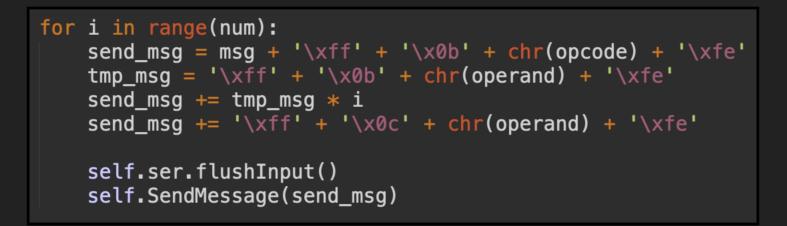
## FUZZING DATA (1) – OPCODE

- Iterate Opcode from '\x00' to '\xff'.
  - '\x36' was excluded because it is a opcode to power off the device.



typedef enum cec\_adapter\_messagecode  $MSGCODE_NOTHING = 0,$ MSGCODE PING, MSGCODE\_TIMEOUT\_ERROR, MSGCODE\_HIGH\_ERROR, MSGCODE\_LOW\_ERROR, MSGCODE\_FRAME\_START, MSGCODE FRAME DATA, MSGCODE\_RECEIVE\_FAILED, MSGCODE\_COMMAND\_ACCEPTED, MSGCODE COMMAND REJECTED, MSGCODE\_SET\_ACK\_MASK, MSGCODE\_TRANSMIT, MSGCODE TRANSMIT EOM, MSGCODE\_TRANSMIT\_IDLETIME, MSGCODE\_TRANSMIT\_ACK\_POLARITY, MSGCODE\_TRANSMIT\_LINE\_TIMEOUT, MSGCODE\_TRANSMIT\_SUCCEEDED, MSGCODE\_TRANSMIT\_FAILED\_LINE, MSGCODE\_TRANSMIT\_FAILED\_ACK, MSGCODE\_TRANSMIT\_FAILED\_TIMEOUT\_DATA, MSGCODE\_TRANSMIT\_FAILED\_TIMEOUT\_LINE, MSGCODE\_FIRMWARE\_VERSION, MSGCODE\_START\_BOOTLOADER, MSGCODE\_GET\_BUILDDATE, MSGCODE\_SET\_CONTROLLED, MSG CODE (libCEC)

## FUZZING DATA (2) – OPERAND

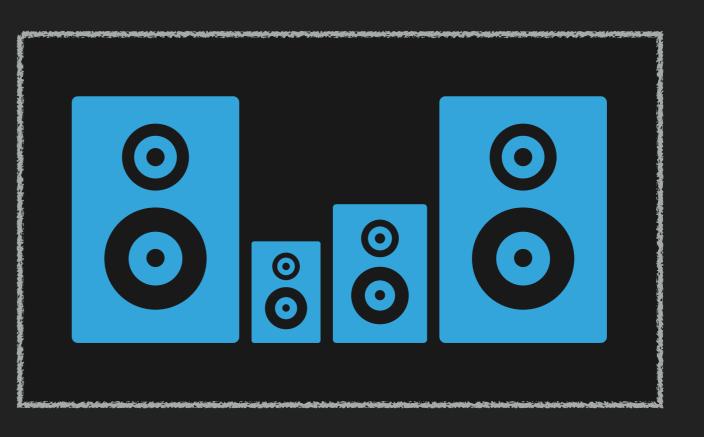

Send 14 blocks of Operand into random values between 0x00 and 0xff.

```
for i in range(num):
    send_msg = msg + '\xff' + '\x0b' + chr(opcode) + '\xfe'
    for j in range(13):
        send_msg += '\xff' + '\x0b' + chr(random.randrange(256)) + '\xfe'
        send_msg += '\xff' + '\x0c' + chr(random.randrange(256)) + '\xfe'
        self.ser.flushInput()
        self.SendMessage(send_msg)
```

To increase the probability of a crash, we used a list of Opcodes that are likely to cause vulnerabilities.

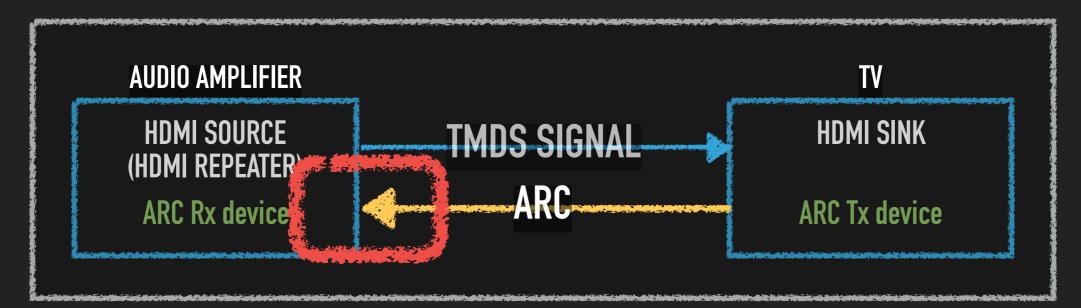
## FUZZING DATA (3) – MESSAGE LENGTH

### Send 1 to num blocks of Operand.




Maximum message size = 16 Blocks(160bits)

=> Header(1 Block), Opcode(0 or 1 Block), Operand(0 ~ 14 Blocks)


### TARGET DEVICES

- Devices that support ARC can be your target.
  - Home Theater
  - Sound Bar
  - ⇒ etc.



## WHAT IS INTERESTING ABOUT ARC?

Vulnerability may exist in the area where the audio signal is returned via ARC.



Since devices that support ARC use lower versions of codecs, the audio codec 1-day vulnerability is likely to work.

# FUZZING RESULT



DDC
DEC

## **REPORT VULNERABILITIES**

### 1) [DDC] Denial of service : Confirmed

| Title               | Process   |
|---------------------|-----------|
| Mibox3 Kernel Panic | Confirmed |

### 2) [CEC] Information leak: Confirmed

| Title                         | Process   |
|-------------------------------|-----------|
| possible memory leak in stack | Confirmed |

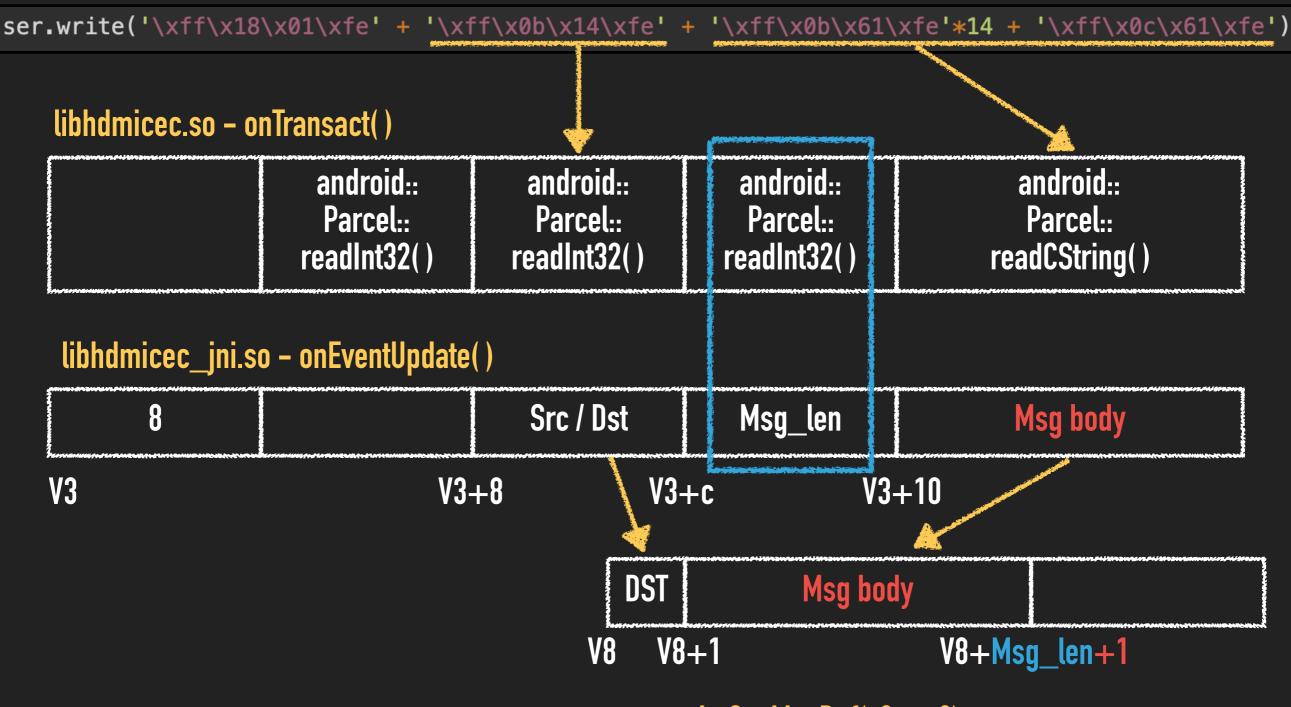
### 3) [CEC] Denial of service : Ignored

TitleProcessKernel panic caused by DoSIgnoredThis issue had already physical contact

## FUZZING RESULT – DDC

### After shutdown due to kernel panic caused by sending EDID data, reboot fails.

| X20<br>6f8<br>6fa<br>6fa | 30 0000006<br>a0 0000006 | fc002176f80<br>51 00000061<br>51 00000061<br>51 00000061                                                                       | 00000061<br>00000061 | 00000061     | 00000061    | 00000061  | 00000061                   | 00000061 |
|--------------------------|--------------------------|--------------------------------------------------------------------------------------------------------------------------------|----------------------|--------------|-------------|-----------|----------------------------|----------|
| ſ                        | 2 247506601              | Karnal paris                                                                                                                   | not ovnot            | ng, Estal a  | contion in  | intorrupt |                            |          |
| Ļ                        |                          | Kernel panic                                                                                                                   | -                    | -            | •           | •         |                            |          |
| Ļ                        |                          | Kernel panic                                                                                                                   |                      | ng: Fatat ex | cception in | interrupt |                            |          |
| ŀ                        |                          | CPU2: stoppin                                                                                                                  |                      |              |             |           |                            |          |
| Ļ                        |                          | CPU2: stoppin                                                                                                                  | -                    | nor/2 Tainta | d.c D       | 2 1/      | 20 00274002                | #1       |
| ł                        |                          | CPU: 2 PID: 0<br>CPU: 2 PID: 0                                                                                                 | -                    | -            |             |           | 29-g927d993<br>29-g927d993 |          |
| L<br>r                   | 2.247526@2]              |                                                                                                                                | comm. swap           | per/2 lainte | eu. 0 D     | 5.14.     | 29-99270995                | #1       |
| ľ                        | 2.247526@2]              |                                                                                                                                |                      |              |             |           |                            |          |
| ł                        |                          | [ <ffffffc0010< td=""><td>88ea4&gt;1 dum</td><td>n hacktrace</td><td>-0×0/0×144</td><td></td><td></td><td></td></ffffffc0010<> | 88ea4>1 dum          | n hacktrace  | -0×0/0×144  |           |                            |          |
| l i                      |                          | [ <fffffc0010< td=""><td>-</td><td>•</td><td></td><td></td><td></td><td></td></fffffc0010<>                                    | -                    | •            |             |           |                            |          |
| ł                        |                          | [ <fffffc0010< td=""><td>-</td><td>·</td><td></td><td></td><td></td><td></td></fffffc0010<>                                    | -                    | ·            |             |           |                            |          |
| ĥ                        |                          | [ <fffffc0010< td=""><td>-</td><td></td><td></td><td></td><td></td><td></td></fffffc0010<>                                     | -                    |              |             |           |                            |          |
| ĥ                        |                          | [ <ffffffc001a< td=""><td>-</td><td></td><td></td><td></td><td></td><td></td></ffffffc001a<>                                   | -                    |              |             |           |                            |          |
| ĥ                        |                          | [ <ffffffc001a< td=""><td>-</td><td>· _</td><td></td><td></td><td></td><td></td></ffffffc001a<>                                | -                    | · _          |             |           |                            |          |
| i i                      |                          | [ <fffffc0010< td=""><td>=</td><td>•</td><td></td><td></td><td></td><td></td></fffffc0010<>                                    | =                    | •            |             |           |                            |          |
| i i                      |                          | [ <fffffc0010< td=""><td>-</td><td></td><td></td><td></td><td></td><td></td></fffffc0010<>                                     | -                    |              |             |           |                            |          |
| í                        |                          | [ <fffffc0010< td=""><td>-</td><td></td><td></td><td></td><td></td><td></td></fffffc0010<>                                     | -                    |              |             |           |                            |          |
| i                        | 2.247561@2]              | -                                                                                                                              | - 0                  |              |             |           |                            |          |


## FUZZING RESULT – CEC

## Memory leak caused by one-byte stack overflow of memcpy().

\_aeabi\_memcpy((char \*)&v8 + 1, v3 + 4, v3[3]); LOBYTE(v8) = v3[2] & 0xF; android::HdmiCecBase::printCecMsgBuf(v2, (const char \*)&v8);

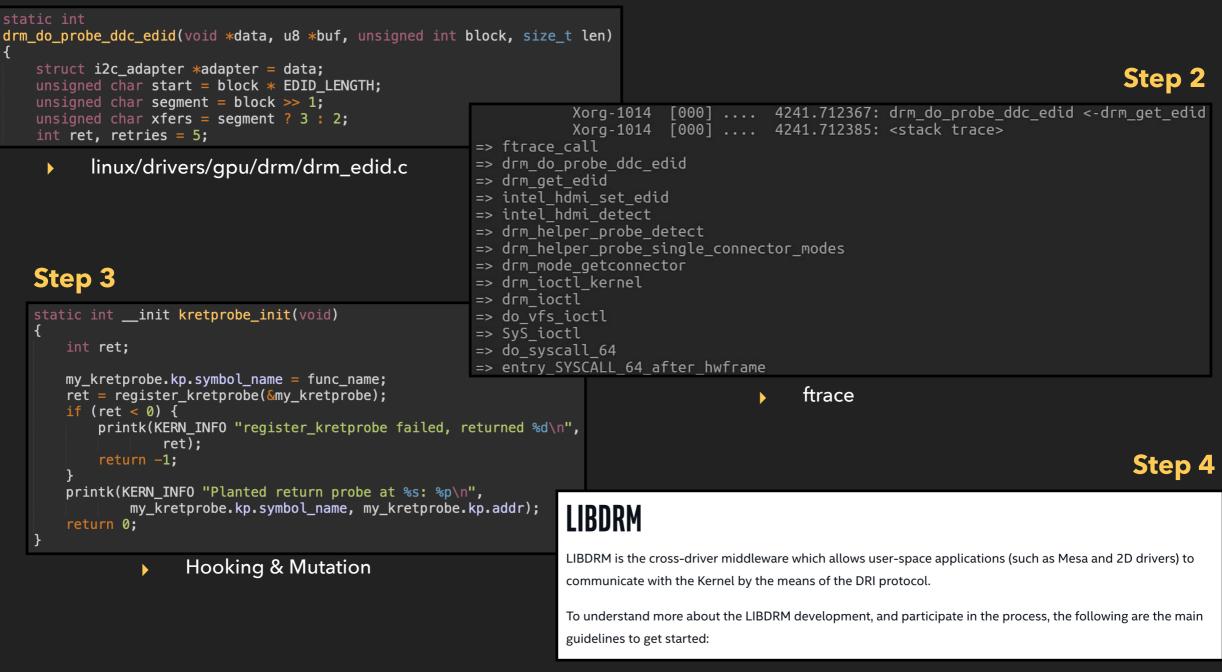
| 10-31 01:54:37.874 3603 3957 D HdmiCecBase: [printCecMsgBuf:] msg: 14 61 61 61 61 61 61 61 61 61 61 61 61 61                                                                            |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 10-31 01:54:37.874 3603 3957 V HdmiCecControl: [threadLoop:] mExtendControl = 3, mDeviceType = 4, isCecControlled = 1                                                                   |
| 10-31 01:54:37.874 3603 3957 V HdmiCecService: [onEventUpdate:] cec message for system and extend                                                                                       |
| 10-31 01:54:37.876 25944 26992 D HdmiCecBase: [printCecEvent:] eventType: 9                                                                                                             |
| 10-31 01:54:37 876 25944 26992 D HdmiCecBase: [printCecMessage:] [1 -> 4] len: 15, body: 61 61 61 61 61 61 61 61 61 61 61 61 61                                                         |
| 10-31 01:54:37.876 25944 26992 D HdmiCecBase: [printCecMsgBuf:] msg: 04 61 61 61 61 61 61 61 61 61 61 61 61 61                                                                          |
| 3f d7 0f                                                                                                                                                                                |
| 10-31 01:54:37.878 3560 3560 W : debuggerd: nandling request: pid=25944 uid=1000 gid=1000 tid=26992                                                                                     |
| 10-31 01:54:38.022 29260 29260 F DEBUG : *** *** *** *** *** *** *** *** ***                                                                                                            |
| 10-31 01:54:38.022 29260 29260 F DEBUG : Build fingerprint: 'Xiaomi/TELEBEE/once:7.0/NBD92G/1971:user/release-keys'                                                                     |
| 10-31 01:54:38.022 29260 29260 F DEBUG : Revision: '0'                                                                                                                                  |
| 10-31 01:54:38.022 29260 29260 F DEBUG : ABI: 'arm'                                                                                                                                     |
| 10-31 01:54:38.022 29260 29260 F DEBUG : pid: 25944, tid: 26992, name: Binder:25944_A >>> system_server <<<                                                                             |
| 10-31 01:54:38.022 29260 29260 F DEBUG : signal 6 (SIGABRT), code -6 (SI_TKILL), fault addr                                                                                             |
| 10-31 01:54:38.028 29260 29260 F DEBUG : Abort message: 'stack corruption detected'                                                                                                     |
| 10-31 01:54:38.028 29260 29260 F DEBUG : r0 0000000 r1 00006970 r2 00000006 r3 00000008                                                                                                 |
| 10-31 01:54:38.028 29260 29260 F DEBUG : r4 d73fa978 r5 00000006 r6 d73fa920 r7 0000010c                                                                                                |
| 10-31 01:54:38.028 29260 29260 F DEBUG : r8 d73fa690 r9 d92e14d0 sl f326efb9 fp 00000000                                                                                                |
| 10-31 01:54:38.028 29260 29260 F DEBUG : ip 00000000 sp d73fa618 lr f305a8d7 pc f305d134 cpsr 20070010                                                                                  |
| 10-31 01:54:38.034 29260 29260 F DEBUG :                                                                                                                                                |
| 10-31 01:54:38.034 29260 29260 F DEBUG : backtrace:                                                                                                                                     |
| 10-31 01:54:38.034 29260 29260 F DEBUG : #00 pc 0004a134 /system/lib/libc.so (tgkill+12)                                                                                                |
| 10-31 01:54:38.034 29260 29260 F DEBUG : #01 pc 000478d3 /system/lib/libc.so (pthread_kill+34)                                                                                          |
| 10-31 01:54:38.034 29260 29260 F DEBUG : #02 pc 0001dbf5 /system/lib/libc.so (raise+10)                                                                                                 |
| 10-31 01:54:38.034 29260 29260 F DEBUG : #03 pc 00019741 /system/lib/libc.so (libc_android_abort+34)                                                                                    |
| 10-31 01:54:38.034 29260 29260 F DEBUG : #04 pc 00017328 /system/lib/libc.so (abort+4)                                                                                                  |
| 10-31 01:54:38.034 29260 29260 F DEBUG : #04 pc 00017528 / System/110/110c.so (abort44)<br>10-31 01:54:38.034 29260 29260 F DEBUG : #05 pc 0001bbef /system/lib/libc.so (libc_fatal+22) |
| · · · · · · · · · · · · · · · · · · ·                                                                                                                                                   |
|                                                                                                                                                                                         |
| 10-31 01:54:38.034 29260 29260 F DEBUG : #07 pc 000096f9 /system/lib/lib/dmicec.so (_ZN7android11HdmiCecBase14printCecMsgBufEPKc+144)                                                   |
| 10-31 01:54:38.034 29260 29260 F DEBUG : #08 pc 04a41062 /dev/ashmem/dalvik-main space 1 (deleted) (offset 0x1000)                                                                      |

## FUZZING RESULT – CEC

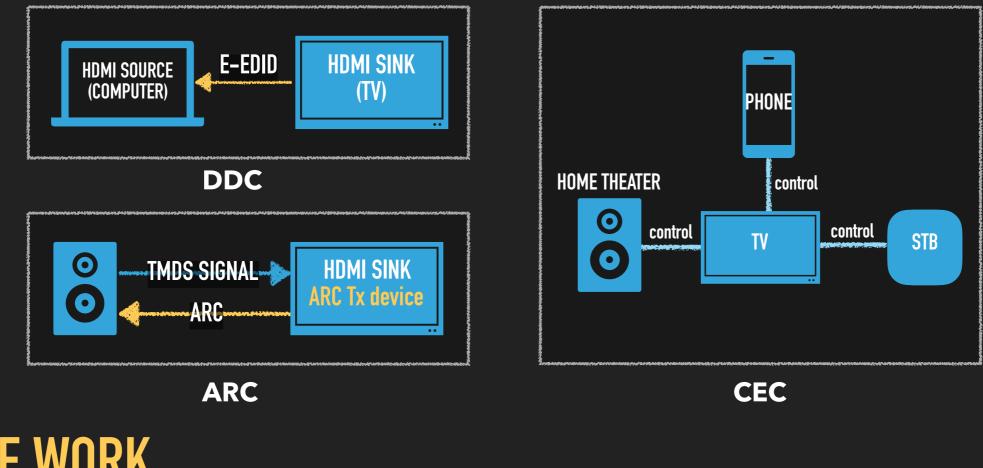


=> printCecMsgBuf(v2, &v8)

## **UBUNTU DDC FUZZER**


- Fuzzing with a 'real' HDMI cable creates a problem of speed and stability.
- The graphics driver vulnerability is highly influential.




So we made a graphics driver fuzzer of HDMI on Ubuntu.

### **UBUNTU DDC FUZZER**

#### Step 1



### SUMMARY



### **FUTURE WORK**

> Vulnerability assessment with eARC protocol added in HDMI 2.1.

Find vulnerabilities of HDMI on graphics driver to save the world :)

Study more about attack vector not considered well

### SOURCE

- HDMI Specification v1.3, v1.4
- https://www.hdmi.org
- 13p What is DDC?: <u>https://www.hdmi.org/learningcenter/kb.aspx?c=10</u>
- 17p How to send E-EDID data? (sda, scl): <u>http://forum.arduino.cc/index.php?</u> action=dlattach;topic=170213.0;attach=45554
- > 17p How to send E-EDID data? (I2C): <u>https://en.wikipedia.org/wiki/I%C2%B2C</u>
- > 19p How to send E-EDID data? (Wire Library): <u>https://www.arduino.cc/en/reference/wire</u>

### IMAGE

- 12p HDMI Communications Channels: <u>https://en.wikipedia.org/wiki/HDMI#/media/</u> <u>File:HDMI\_Connector\_Pinout.svg</u>
- > 29p CEC Fuzzer Prerequisites: <u>https://www.pulse-eight.com/generated-assets/products/0000237.jpeg</u>
- > 46p DDC Fuzzer Prerequisites: <u>https://www.arduino.cc/en/Guide/ArduinoMega2560</u>
- 59p Ubuntu: <u>https://assets.ubuntu.com/v1/ed348358-logo-cof.svg</u>
- > 59p Intel Graphics Driver: https://downloadcenter.intel.com/inc/styles/img/icon-dsa.png

# THANK YOU

## **CONTACT: MORAEH23@GMAIL.COM**

