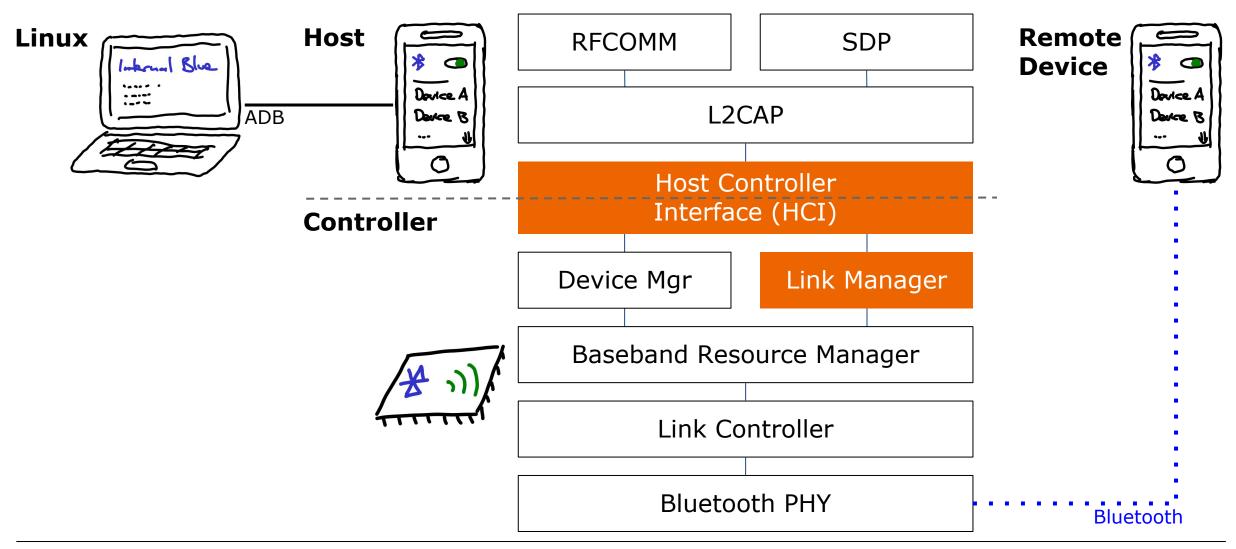
Bluetooth, does it spark joy?

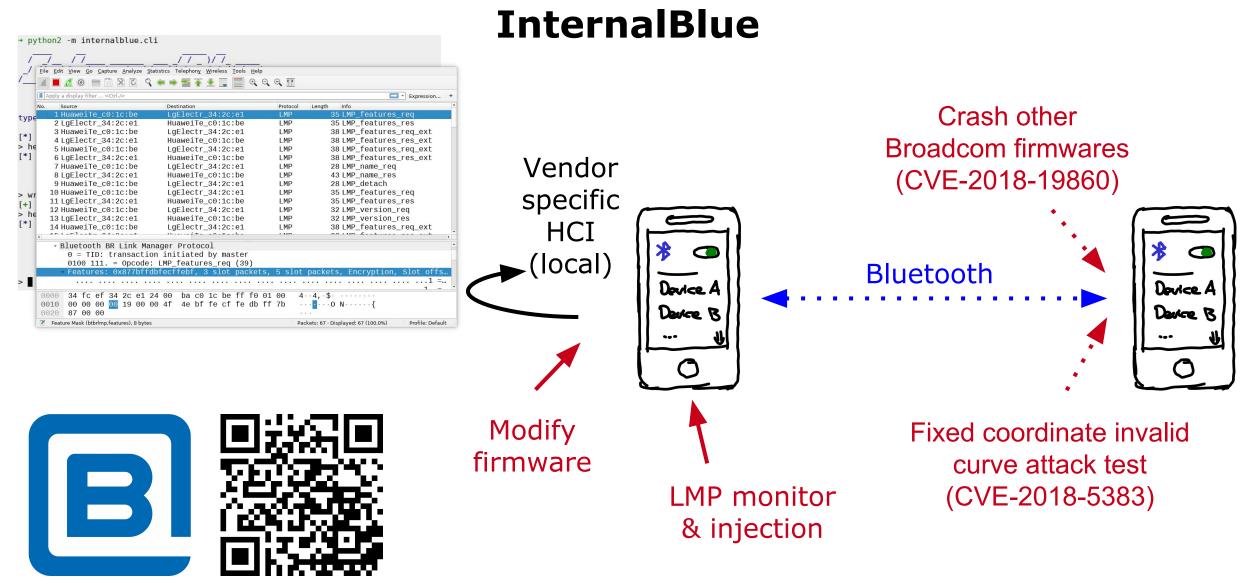
Dennis Mantz Security Analyst @ ERNW GmbH (Heidelberg)

CYSEC vbersecurity TU Darmstadt TECHNISCHE UNIVERSITÄT DARMSTADT

Jiska Classen


Motivation

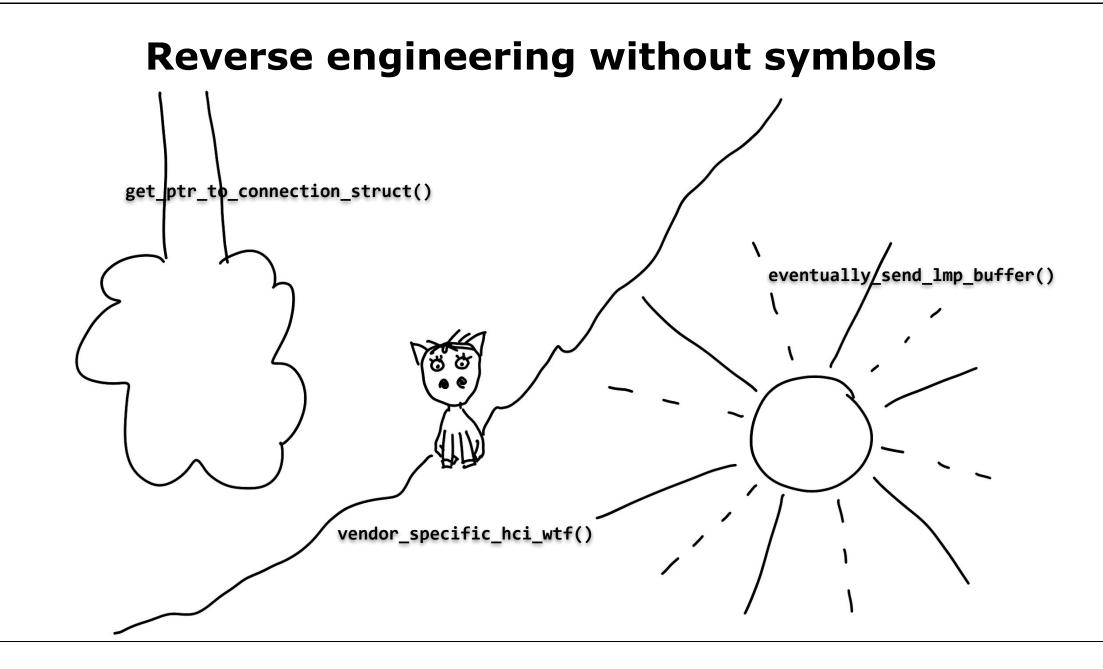
Reverse engineering Bluetooth firmware - why?!


- Dissecting firmware gives interesting insights on a **security** perspective.
- Modifying firmware allows to have a full-featured working Bluetooth implementation and then adding your features...
- Attach open source to a "closed" source project.
- Requires background in security, code analysis, wireless signals... Not many people can do it, but many require the results.
- We like reverse engineering and already had great experiences with similar projects (e.g.: nexmon).

100111010 010010110 11011 $n \wedge n$

Platform Overview

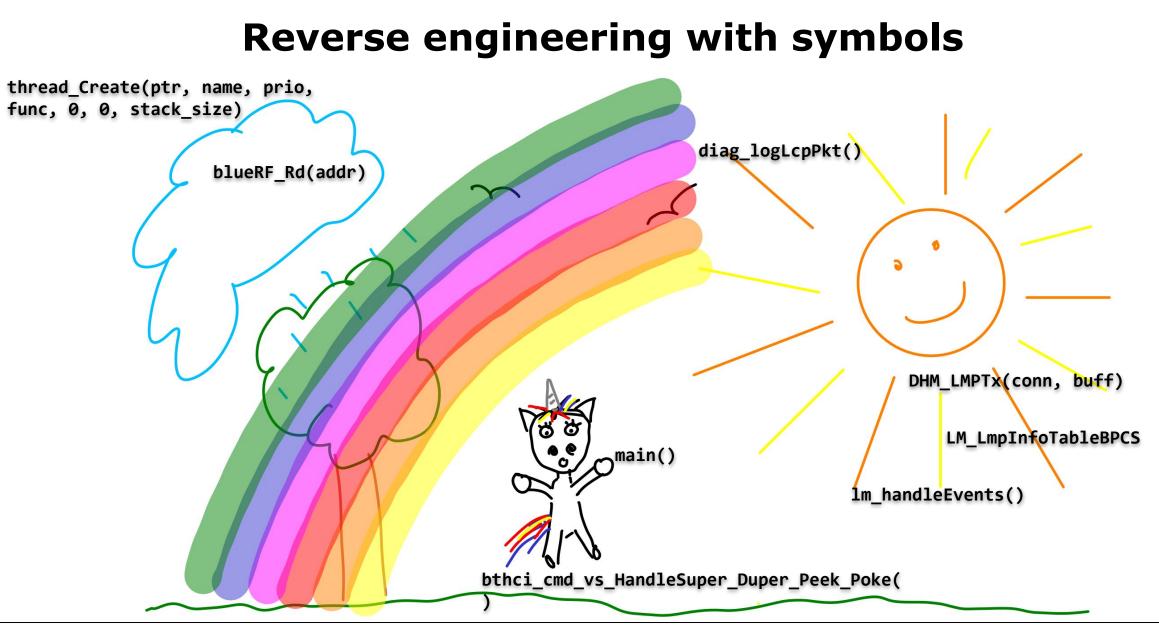
Features



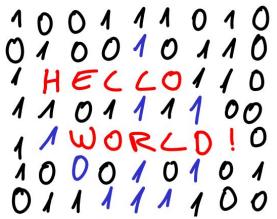
https://github.com/seemoo-lab/internalblue

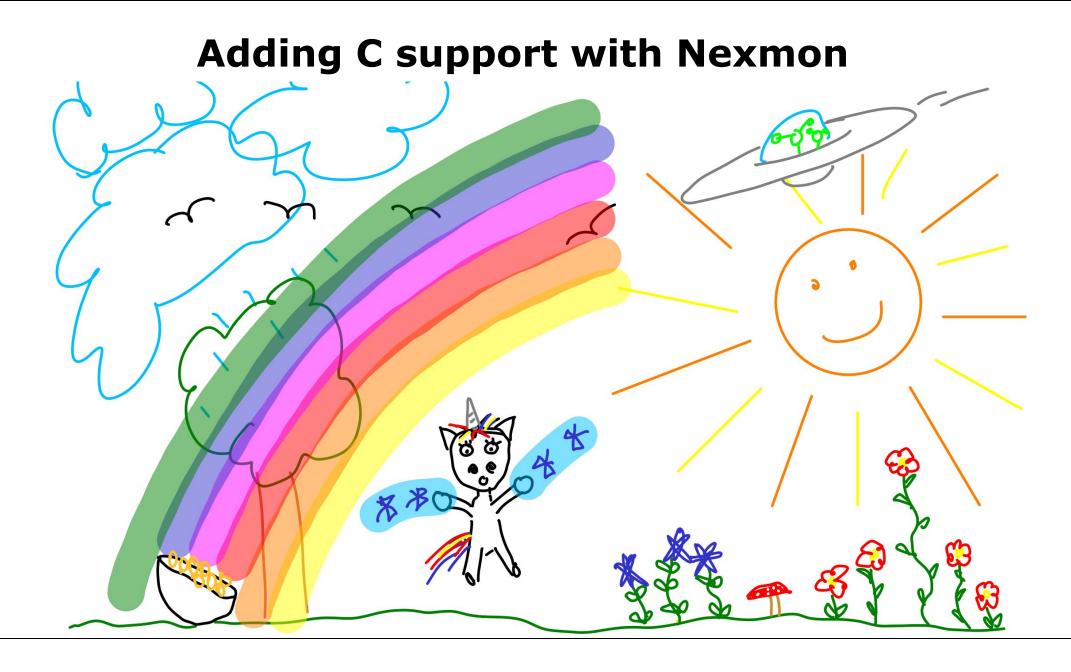
6

Reversing ...


- Okay... maybe not that simple. Where can we patch? What are we patching? Which functions are interesting?
- Almost no strings, no function names, no documentation except 2822 pages of Bluetooth 5.0 standard.
- Byte sequences in the standard help locating some functions.
- Many similarities between different firmware versions :)

Does it work on the newest device?


- We ported InternalBlue from **Nexus 5** to **Raspberry Pi 3/3+** and **Nexus 6P**.
- Tested on CYW20735 Bluetooth 5.0-compliant BT/BLE wireless MCU, it still has READ_RAM, WRITE_RAM, LAUNCH_RAM HCI commands.
 - Firmware version January 18 2018
- Reading out the whole firmware and applying temporarily patches without any checks in 2018, thank you BroadcomCypress!
- Reversing could have been faster: patch.elf shipped with development software contains **symbol table** for almost every firmware function...



Patching firmware

- Broadcom offers vendor specific HCI commands READ_RAM, WRITE_RAM, LAUNCH_RAM.
- .hcd-files shipped with the driver also use these commands to apply patches to RAM and ROM.
- ROM-patching is limited to a few slots, but that's sufficient for branches into RAM.
- Neither .hcd-files nor vendor specific HCI commands require signatures, authentication, etc. **Just insert your code :)**
- Currently only assembly code, but we're working on C support with NexMon (work in progress on branch bluetooth-wip).

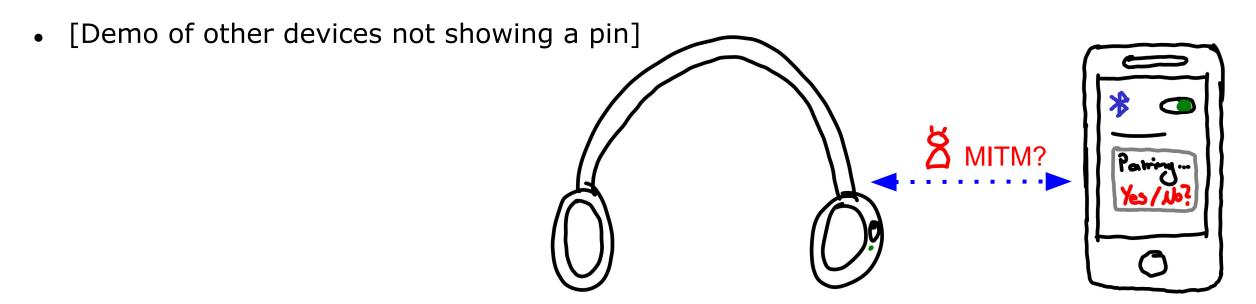
Hidden Broadcom Features

Broadcom Diagnostics Protocol

- LMP: Link Manager Protocol
- Located below HCI, cannot easily be sniffed as handling happens within firmware.
- Legacy version: binary patches for Nexus 5 and Nexus 6P to enable LMP monitoring and injection.
- HCI reversing:
 - HCI command to send LMP packets already included, but packets are checked for validity.
- Diagnostics protocol:
 - Patch Android driver to forward H4 type 0x07.
 - LMP and LCP logging on all
 Brodcom chips (at least 2008-2018).

App	ly a display filter <ctrl-></ctrl->			Expression	
lo.	Source	Destination	Protocol	Length Info	
	1 HuaweiTe_c0:1c:be	LgElectr_34:2c:e1	LMP	35 LMP_features_req	
2	2 LgElectr_34:2c:e1	HuaweiTe_c0:1c:be	LMP	35 LMP_features_res	
3	3 HuaweiTe_c0:1c:be	LgElectr_34:2c:e1	LMP	38 LMP_features_req_ext	
	4 LgElectr_34:2c:e1	HuaweiTe_c0:1c:be	LMP	38 LMP_features_res_ext	
;	5 HuaweiTe_c0:1c:be	LgElectr_34:2c:e1	LMP	38 LMP_features_req_ext	
	6 LgElectr_34:2c:e1	HuaweiTe_c0:1c:be	LMP	38 LMP_features_res_ext	
14	7 HuaweiTe_c0:1c:be	LgElectr_34:2c:e1	LMP	28 LMP_name_req	
	8 LgElectr_34:2c:e1	HuaweiTe_c0:1c:be	LMP	43 LMP_name_res	
	9 HuaweiTe_c0:1c:be	LgElectr_34:2c:e1	LMP	28 LMP_detach	
	0 HuaweiTe_c0:1c:be	LgElectr_34:2c:e1	LMP	35 LMP_features_req	
	1 LgElectr_34:2c:e1	HuaweiTe_c0:1c:be	LMP	35 LMP_features_res	
	2 HuaweiTe_c0:1c:be	LgElectr_34:2c:e1	LMP	32 LMP_version_req	
	3 LgElectr_34:2c:e1	HuaweiTe_c0:1c:be	LMP	32 LMP_version_res	
	4 HuaweiTe_c0:1c:be	LgElectr_34:2c:e1	LMP	38 LMP_features_req_ext	
				,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	
1	Bluetooth BR Link Mai				
		n initiated by master			
		LMP_features_req (39)			_
	Features: 0x877bffc	bfecffebf, 3 slot packet	s, 5 slot	packets, Encryption, Slot off	
				\cdots \cdots \cdots \cdots \cdots \cdots \cdots \cdots \cdots	=
000	0 34 fc ef 34 2c e1 2	4 00 ba c0 1c be ff f0	01 00 4	• 4 , • \$ • • • • • • • •	
001	0 00 00 00 00 19 00 0	00 4f 4e bf fe cf fe db	ff 7b · ·	••••• 0 N••••••{	
002	0 87 00 00				

We P Bluetooth



Discoverability

- If Bluetooth is on, anyone can connect to a device no matter if it is discoverable.
- MAC addresses can be derived by sniffing with a software-defined radio.
- [Demo opening connections via kown Bluetooth addresses]

Niño

- Bluetooth 5.0 still offers "Just Works" pairing if a device claims to have no input and no output. IO capabilities are not authenticated.
- "Just Works" pairing is not secure against MITM.
- MITM can simply fake Niño and then attack "Just Works".
- Smartphones only show a yes/no-question instead of warning the user: This might be insecure pairing!

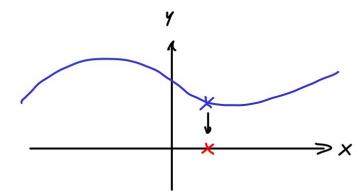
"Niño" Man-In-The-Middle Attack on Bluetooth Secure Simple Pairing. Konstantin Hypponen, Keijo M.J. Haataja. 2007.

Testing other devices for known bugs

- CVE-2018-5383 aka "Fixed-coordinate Invalid Curve Attack" (23.07.2018)
- [PoC zeroed y-coordinate in elliptic curve crypto]

https://media.ccc.de/v/2018-154-internalblue-a-deep-dive-into-bluetooth-controller-firmware#t=1690

	Ear Mew Oo Capture Analyze Statisti	cs Telephon <u>y W</u> ireless <u>T</u> ools <u>H</u> elp			
	📕 🖉 💿 🚞 🗎 🗙 🚱 ፍ	👄 警 春 👱 📃 📃 Q, G	Q 🕂		
📕 Ap	oply a display filter <ctrl-></ctrl->				Expression
No.	Source	Destination	Protocol Length	Info	LMP
	47 LgElectr_7d:03:f1		LMP	31 LMP_IO_Capability_res	
	48 LgElectr_34:2c:e1		LMP	30 LMP_encapsulated_header	
	49 LgElectr_7d:03:f1	LgElectr_34:2c:e1	LMP	28 LMP_accepted	
	50 LgElectr_34:2c:e1	LgElectr_7d:03:f1	LMP	43 LMP_encapsulated_payload	
	51LgElectr_7d:03:f1	LgElectr_34:2c:e1	LMP	28 LMP_accepted	
	52 LqElectr 34:2c:e1	LqElectr 7d:03:f1	LMP	43 LMP encapsulated payload	
-	rame 52: 43 bytes on w				
	Meta Data Daakat Haadar				
	Packet Header Payload → Payload Header				
	Payload → Payload Header	nager Protocol			
	Payload • Payload Header • Bluetooth BR Link Ma	nager Protocol on initiated by mast	ter		
	<pre>Payload Payload Header Payload Header Bluetooth BR Link Ma 0 = TID: transaction</pre>	on initiated by mast		2)	
	<pre>Payload Payload Header Bluetooth BR Link Ma 0 = TID: transactio 0111 110. = Opcode</pre>	on initiated by mast : LMP_encapsulated r	ayload (6		
	<pre>Payload Payload Header Bluetooth BR Link Ma 0 = TID: transactio 0111 110. = Opcode</pre>	on initiated by mast	ayload (6		
	<pre>Payload > Payload Header > Bluetooth BR Link Ma 0 = TID: transaction 0111 110. = Opcode Encapsulated Data:</pre>	on initiated by mast : LMP_encapsulated r	ayload (6		
•	<pre>Payload > Payload Header > Bluetooth BR Link Ma 0 = TID: transaction 0111 110. = Opcode Encapsulated Data: CRC: 0x0000</pre>	on initiated by mast : LMP_encapsulated r	00000000000000000000000000000000000000	9000	

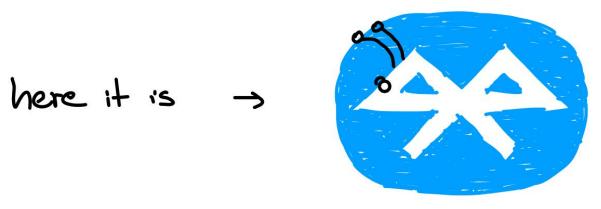

Details on this attack: http://www.cs.technion.ac.il/~biham/BT/

Try this at home! https://github.com/seemoo-lab/internalblue/blob/master/examples/CVE_2018_5383_Invalid_Curve_Attack_PoC.pv

Fixed-coordinate Invalid Curve Attack

- Pairing uses DH Key Exchange with Elliptic Curves (ECDH)
- Public Key is a point on the curve
- The Y-coordinate of the point is not authenticated by the PIN
- MITM attacker can set the Y-coordinate to 0 (point not on the curve anymore, 'invalid curve')
- Result: Both participants calculate a null-key
- Only works if both private keys (random; uniform) are even

(25% success probability)


Fixed-coordinate Invalid Curve Attack

- Idea: Use InternalBlue to test other BT devices for the vulnerability
- A Patch can zero the Y-coordinates just like an attacker
- Additionally enforce the private key to be even

(increase success rate to 50%)

- Nexus 5 itself is vulnerable: no need to bypass any checks ^^
- All devices which pair successfully with the patched Nexus 5 are vulnerable

Finding Bugs

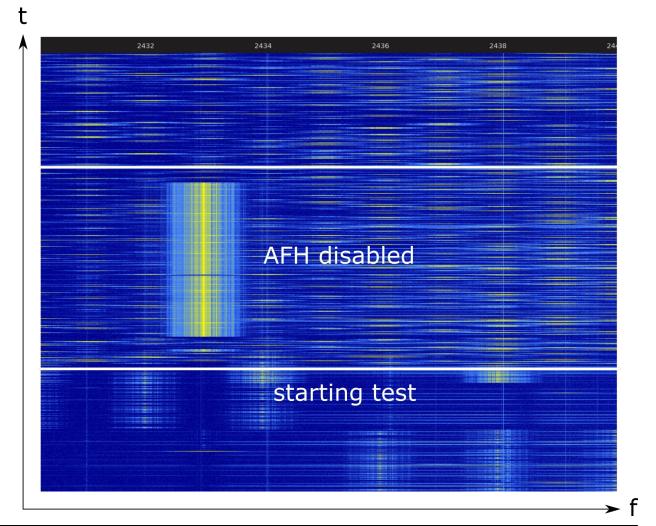
Our own little bug...

- Just a missing "if" somewhere. They silently patched it in firmware version ~summer 2014 but never shipped .hcd-patches for older firmwares. Long development cycles mean those devices are still around.
- Incomplete list of vulnerable devices:
 - Nexus 5
 - \circ iPhone 5, 5s, 6
 - \circ MacBook Pro 13" mid 2012, early 2015, 2016
 - Xperia Z3, Z5
 - Raspberry Pi 3
 - Samsung Galaxy Note 3
- CVE-2018-19860 / BT-B-gOne
 [Demo of remote crash]

"does not exist"

"not standard compliant"

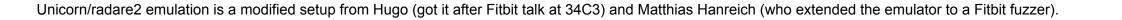
"does not affect WiFi performance"


...little bugs grow up so fast!

- Missing parameter check...
- Crashes are the best case!
- More reversing allows to execute meaningful code, but for each firmware version memory contents are different.
 (So far we did not find arbitrary code execution on Nexus 5.)
- On Nexus 5 we are able to execute test mode, which normally needs to be enabled locally on the host.
- CVE-2018-19860 / BT-B-gOne
 [Demo of remote device under test / jamming]

Test mode execution

- Master (attacker) and remote device exchange test packets.
- Master can disable adaptive frequency hopping (AFH) on target device but not change its own...
- No matter if AFH is disabled or not, one can see both devices hopping on all channels during test mode.
- Works on Nexus 5 and Xperia Z3 (BCM4339).



Bug finding toolchain

- Adding tracepoints with InternalBlue only execute once, dump registers, stack and heap, example here is for LMP dispatcher in Nexus 5: tp add 0x3f3f4
- Emulation with Unicorn/radare2 which generates function call sequences and memory diffs. Currently only running for one function call.
- Emulation with qemu/gdb for sequences of incoming frames (work in progress).

• Whatever, it generates tons of hexadecimal stuff on that you can stare for hours.

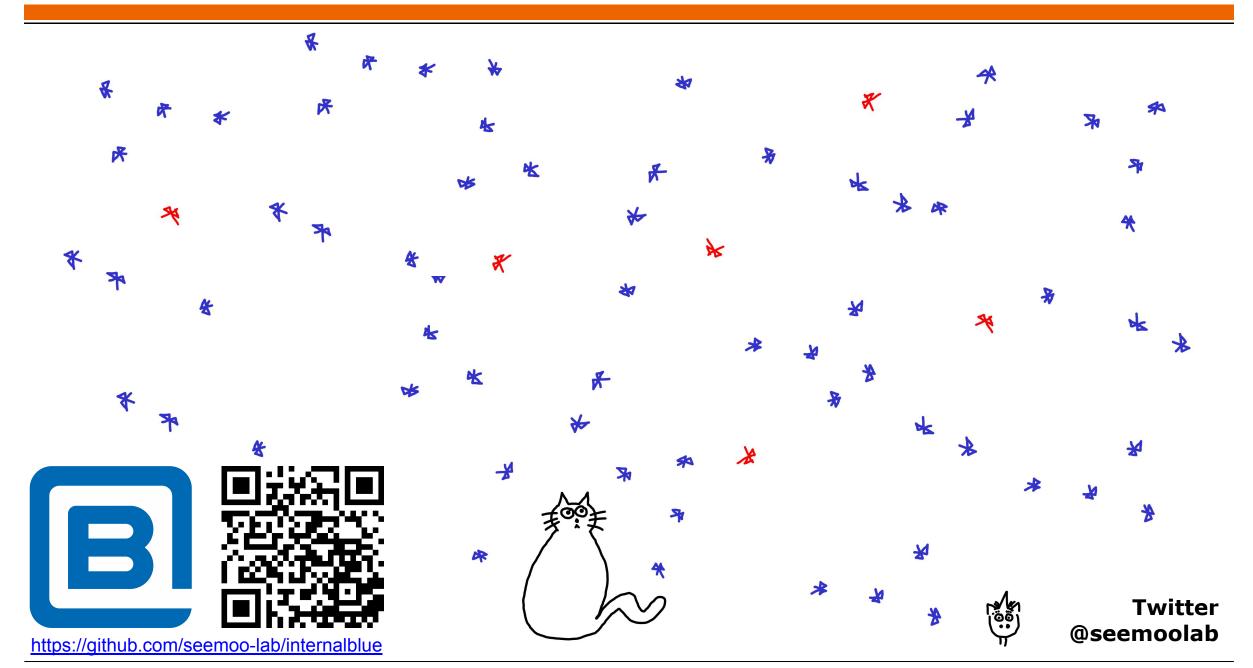
Fixing Bugs

It's dead, Jim!

Bluetooth firewall

- Actual fix: Fix vulnerable handler. We have a .hcd-patch ready for Nexus 5. Releasing that fix would tell you which handler is vulnerable. Patch size is 14 bytes...
- Generic fix: Apply generic filters, because invisible devices will reply to pings, connection establishments, etc.

No standard compliant behavior, crashes Apple's bluetoothd - oops ;)



How long will the old bug be around?

- Vendor fix: vendors need to provide updated .hcd-files with their operating system updates.
- Some devices are **too old** to get vendor updates...
- Vendor updates will **leak the vulnerability**.

Turn off Bluetooth if your device has a Broadcom chipset and was introduced to the market before 2017.

- Long development cycles make firmware from 2014 existing in Bluetooth devices produced in 2016.
- If you have a very old chip you are not vulnerable: iPhone 4, 4s, Thinkpad T420, iMac 2009...

