
Jiska Classen
Technische Universität Darmstadt

Secure Mobile Networking Lab - SEEMOO

Bluetooth, does it spark joy?

Dennis Mantz
Security Analyst @ ERNW GmbH (Heidelberg)

2

Motivation

3

Reverse engineering Bluetooth firmware - why?!

● Dissecting firmware gives interesting insights on a security perspective.

● Modifying firmware allows to have a full-featured working Bluetooth
implementation and then adding your features…

● Attach open source to a “closed” source project.

● Requires background in security, code analysis, wireless signals…
Not many people can do it, but many require the results.

● We like reverse engineering and already had great experiences
with similar projects (e.g.:).

4

Platform Overview

Bluetooth PHY

Link Controller

Baseband Resource Manager

Device Mgr Link Manager

Host Controller
Interface (HCI)

RFCOMM SDP

L2CAP

Host

Controller

Remote
Device

ADB

Bluetooth

Linux

5

Features

6

Vendor
specific

HCI
(local)

InternalBlue

Bluetooth

Modify
firmware

Fixed coordinate invalid
curve attack test

(CVE-2018-5383)

Crash other
Broadcom firmwares
(CVE-2018-19860)

LMP monitor
& injection

InternalBlue - A Deep Dive into Bluetooth Controller Firmware. Dennis Mantz. https://media.ccc.de/v/2018-154-internalblue-a-deep-dive-into-bluetooth-controller-firmware

https://github.com/seemoo-lab/internalblue

https://media.ccc.de/v/2018-154-internalblue-a-deep-dive-into-bluetooth-controller-firmware
https://github.com/seemoo-lab/internalblue

7

● Okay… maybe not that simple.
Where can we patch? What are we
patching? Which functions are
interesting?

● Almost no strings, no function
names, no documentation
except 2822 pages of Bluetooth
5.0 standard.

● Byte sequences in the standard
help locating some functions.

● Many similarities between different
firmware versions :)

Reversing ...

CodeCut. https://github.com/JHUAPL/CodeCut

https://github.com/JHUAPL/CodeCut

8

Reverse engineering without symbols

get_ptr_to_connection_struct()

eventually_send_lmp_buffer()

vendor_specific_hci_wtf()

9

● We ported InternalBlue from Nexus 5 to Raspberry Pi 3/3+ and Nexus 6P.

● Tested on CYW20735 Bluetooth 5.0-compliant BT/BLE wireless MCU, it still has
READ_RAM, WRITE_RAM, LAUNCH_RAM HCI commands.
○ Firmware version January 18 2018

● Reading out the whole firmware and applying temporarily patches without any
checks in 2018, thank you BroadcomCypress!

● Reversing could have been faster:
patch.elf shipped with development
software contains symbol table for
almost every firmware function…

Does it work on the newest device?

10

Reverse engineering with symbols

blueRF_Rd(addr)

bthci_cmd_vs_HandleSuper_Duper_Peek_Poke(
)

DHM_LMPTx(conn, buff)

LM_LmpInfoTableBPCS

diag_logLcpPkt()

lm_handleEvents()

main()

thread_Create(ptr, name, prio,
func, 0, 0, stack_size)

11

● Broadcom offers vendor specific HCI commands READ_RAM, WRITE_RAM, LAUNCH_RAM.
● .hcd-files shipped with the driver also use these commands to apply patches to RAM

and ROM.
● ROM-patching is limited to a few slots, but that’s sufficient for branches into RAM.
● Neither .hcd-files nor vendor specific HCI commands require signatures,

authentication, etc. Just insert your code :)

● Currently only assembly code, but we’re working on C support with NexMon (work
in progress on branch bluetooth-wip).

Patching firmware

NexMon. https://github.com/seemoo-lab/nexmon

https://github.com/seemoo-lab/nexmon

12

Adding C support with Nexmon

13

Hidden Broadcom
Features

14

Broadcom Diagnostics Protocol

● LMP: Link Manager Protocol
● Located below HCI, cannot easily be sniffed as handling happens within firmware.

● Legacy version: binary patches for Nexus 5 and Nexus 6P to enable LMP
monitoring and injection.

● HCI reversing:
○ HCI command to send LMP

packets already included, but
packets are checked for validity.

● Diagnostics protocol:
○ Patch Android driver to forward

H4 type 0x07.
○ LMP and LCP logging on all

Brodcom chips (at least 2008-2018).

15

We ❤ Bluetooth

16

● If Bluetooth is on, anyone can connect to a device - no matter if it is
discoverable.

● MAC addresses can be derived by sniffing with a software-defined radio.

● [Demo opening connections via kown Bluetooth addresses]

Discoverability

Bluetooth smells like chicken. Dominic Spill, Michael Ossmann, Mark Steward. https://www.youtube.com/watch?v=qMQv1OqS-_8. 2009.

https://www.youtube.com/watch?v=qMQv1OqS-_8

17

● Bluetooth 5.0 still offers “Just Works” pairing if a device claims to have no input
and no output. IO capabilities are not authenticated.

● “Just Works” pairing is not secure against MITM.
● MITM can simply fake Niño and then attack “Just Works”.
● Smartphones only show a yes/no-question instead of warning the user:

This might be insecure pairing!

● [Demo of other devices not showing a pin]

Niño

“Niño” Man-In-The-Middle Attack on Bluetooth Secure Simple Pairing. Konstantin Hypponen, Keijo M.J. Haataja. 2007.

MITM?

18

Testing other devices for known bugs

● CVE-2018-5383 aka “Fixed-coordinate Invalid Curve Attack” (23.07.2018)

● [PoC zeroed y-coordinate in elliptic curve crypto]
 https://media.ccc.de/v/2018-154-internalblue-a-deep-dive-into-bluetooth-controller-firmware#t=1690

Details on this attack: http://www.cs.technion.ac.il/~biham/BT/
Try this at home! https://github.com/seemoo-lab/internalblue/blob/master/examples/CVE_2018_5383_Invalid_Curve_Attack_PoC.py

https://media.ccc.de/v/2018-154-internalblue-a-deep-dive-into-bluetooth-controller-firmware#t=1690
http://www.cs.technion.ac.il/~biham/BT/
https://github.com/seemoo-lab/internalblue/blob/master/examples/CVE_2018_5383_Invalid_Curve_Attack_PoC.py

19

● Pairing uses DH Key Exchange with Elliptic Curves (ECDH)

● Public Key is a point on the curve

● The Y-coordinate of the point is not authenticated by the PIN

● MITM attacker can set the Y-coordinate to 0

(point not on the curve anymore, ‘invalid curve’)

● Result: Both participants calculate a null-key

● Only works if both private keys (random; uniform) are even

(25% success probability)

Fixed-coordinate Invalid Curve Attack

20

● Idea: Use InternalBlue to test other BT devices for the vulnerability

● A Patch can zero the Y-coordinates just like an attacker

● Additionally enforce the private key to be even

(increase success rate to 50%)

● Nexus 5 itself is vulnerable: no need to bypass any checks ^^

● All devices which pair successfully with the patched Nexus 5 are vulnerable

Fixed-coordinate Invalid Curve Attack

21

Finding Bugs

22

Our own little bug...

● Just a missing “if” somewhere. They silently patched it in firmware version
~summer 2014 but never shipped .hcd-patches for older firmwares. Long
development cycles mean those devices are still around.

“does not exist”

“not standard compliant”

“does not affect WiFi performance”

● CVE-2018-19860 / BT-B-g0ne
[Demo of remote crash]

● Incomplete list of vulnerable devices:
○ Nexus 5
○ iPhone 5, 5s, 6
○ MacBook Pro 13” mid 2012, early 2015, 2016
○ Xperia Z3, Z5
○ Raspberry Pi 3
○ Samsung Galaxy Note 3

23

● Missing parameter check...
● Crashes are the best case!
● More reversing allows to execute meaningful

code, but for each firmware version memory
contents are different.
(So far we did not find arbitrary code execution
on Nexus 5.)

● On Nexus 5 we are able to execute test mode,
which normally needs to be enabled locally on
the host.

● CVE-2018-19860 / BT-B-g0ne
[Demo of remote device under test / jamming]

...little bugs grow up so fast!

24

● Master (attacker) and remote device
exchange test packets.

● Master can disable adaptive
frequency hopping (AFH) on target
device but not change its own…

● No matter if AFH is disabled or not,
one can see both devices hopping on
all channels during test mode.

● Works on Nexus 5 and Xperia Z3
(BCM4339).

Test mode execution

25

● Adding tracepoints with InternalBlue - only execute once, dump registers, stack
and heap, example here is for LMP dispatcher in Nexus 5:
tp add 0x3f3f4

● Emulation with Unicorn/radare2 which generates function call sequences and
memory diffs. Currently only running for one function call.

● Emulation with qemu/gdb for sequences of incoming frames (work in progress).

● Whatever, it generates tons of hexadecimal
stuff on that you can stare for hours.

Bug finding toolchain

Unicorn/radare2 emulation is a modified setup from Hugo (got it after Fitbit talk at 34C3) and Matthias Hanreich (who extended the emulator to a Fitbit fuzzer).

26

Fixing Bugs

27

● Actual fix: Fix vulnerable handler. We have a .hcd-patch ready for Nexus 5.
Releasing that fix would tell you which handler is vulnerable.
Patch size is 14 bytes…

● Generic fix: Apply generic filters, because invisible devices will reply to pings,
connection establishments, etc.

No standard compliant behavior, crashes
Apple’s bluetoothd - oops ;)

Bluetooth firewall

Try this at home! https://github.com/seemoo-lab/internalblue/blob/master/examples/LMP_MAC_Address_Filter.py

https://github.com/seemoo-lab/internalblue/blob/master/examples/LMP_MAC_Address_Filter.py

28

● Vendor fix: vendors need to provide updated .hcd-files with their operating system
updates.

● Some devices are too old to get vendor updates…
● Vendor updates will leak the vulnerability.

Turn off Bluetooth if your device has a Broadcom chipset
and was introduced to the market before 2017.

● Long development cycles make firmware from 2014 existing in Bluetooth devices
produced in 2016.

● If you have a very old chip you are not vulnerable: iPhone 4, 4s, Thinkpad T420,
iMac 2009…

How long will the old bug be around?

29

Twitter
@seemoolabhttps://github.com/seemoo-lab/internalblue

https://github.com/seemoo-lab/internalblue

