

A Diet of Poisoned Fruit: Designing Implants & OT Payloads for ICS Embedded Devices

Jos Wetzels, Marina Krotofil

Marina Krotofil @marmusha

- Senior Security Engineer
- Specializing on offensive security of Critical Infrastructures
- Focus: Physical Damage or how to make somethings go bad, crash or blow up by means of cyber-attacks

Jos Wetzels @s4mvartaka

- Principal Consultant & Security Researcher
- Focus: Embedded Systems Security (ICS, Automotive, IoT, ...)
- (previously) Security Researcher
 @ University of Twente on protection of critical infrastructure

AGENDA

1. Introduction

2. Cyber-Physical Attack Lifecycle

- 3. Implants
- 4. OT Payloads
- 5. Conclusion

Here is a Plant. What is Your Plan?

Two Common View on Cyber-Physical Attacks

• "Trivial! Look at the state of ICS security!"

 "Borderline impossible! These processes are extremely complex & engineered for safety!"

Typical Expectation: MAGIC BUTTON

Attacks with Strategic and Long Lasting Effect

- Attacks with strategic, lasting damage will be process specific
 & require good process comprehension
- Wil require attacker to develop detailed 'damage scenario'
 - What causes a pipeline to explode?
 - What causes the *right* pipeline to explode?
 - What causes the *right* pipeline to explode at the *right* moment?

Industrial Control Systems (ICS)

IT Security vs. OT Security

ICS security

IT security

(cyber-security ->
 taking over the
 infrastructure)

OT security (causing impact on the operations -> process and equipment) Attack payload Marina & Jos

Industrial Network Architecture

Physical Process and Control Equipment

https://vecer.mk/files/article/2017/05/02/485749-saudiska-arabija-ja-kupi-najgolemata-naftena-rafinerija-vo-sad.jpg

http://www.jfwhite.com/Collateral/Images/English-US/Galleries/middleboro9115kvbreakers.jpg

https://www.roboticsbusinessreview.com/wp-content/uploads/2016/05/jaguar-factory.jpg

C 2019 https://www.oilandgasproductnews.com/files/slides/locale_image/medium/0089/22183_en_16f9d_8738_honeywellprocess-solutions-rtu2020-process-controller.jpg

https://selinc.com/uploadedImages/Web/Videos/Playlists/Playlist_RTAC_1280x720.png?n=6358475812600

http://www02.abb.com/global/seitp/seitp202.nsf/0/0601d25ed243cfb0c1257d7e0043e50e/\$file/7184_lvl2.jpg

Physical Process and Control Equipment

Security vs. Safety

Hazards and Layers of Safety Protections

Designing Cyber-Physical Payload

https://cdn5.vectorstock.com/i/1000x1000/32/14/skulland-crossbones-with-binary-code-vector-20603214.jpg

AGENDA

1. Introduction

2. Cyber-Physical Attack Lifecycle

- 3. Implants
- 4. OT Payloads
- 5. Conclusion

Cyber-Physical Attack Development Lifecycle

- If you know how attackers work, you can figure out how to stop them
- Attack lifecycle is a common method to describe a process of conducting cyber attacks

⊘Secura

How Does This Fit into Other Attack Frameworks?

Lockheed Martin, the Cyber Kill Chain®

https://www.lockheedmartin.com/en-us/capabilities/cyber/cyber-kill-chain.html

⊘Secura

SANS Industrial Control System Cyber Kill Chain

You are here

https://www.sans.org/reading-room/whitepapers/ICS/paper/36297

ICS MITRE ATT&CK[™]

Otis Alexander. Modeling Adversarial Behavior against ICS, S4'19

Persistence	Privilege Escalation	Defense Evasion	Operator Evasion	Credential Access	Discovery	Lateral Movement	Execution	Command and Control	Disruption	Destruction
Valid Accounts		Rootkit		Network Sniffing		Exploitation of Vulnerability		Connection Proxy	Module Firmware	
Module Firmware	Exploitation of Vulnerability	File Deletion	Block Serial Comm Port	Brute Force	Device Information	Default Credentials	Scripting	Commonly Used Port	Spoof Command Message	
External Remote Service		Modify Event Log	Modify I/O Image	Default Credentials	Control Process	Valid Accounts	Graphical User Interface		Block Command Message	
Modify Control Logic		Alternate Modes of Operation	Modify Reporting Settings	Exploitation of Vulnerability	Role Identification	External Remote Service	Command-Line Interface		Modify I/O Image	
Modify System Settings		Masquerading	Modify Reporting Message	Credential Dumping	Location Identification	Modify Control Logic	Modify System Settings		Exploitation of Vulnerability	
Memory Residence		Modify System Settings	Block Reporting Message		Network Connection Enumeration		Man in the Middle		Modify Reporting Settings	
System Firmware			Spoof Reporting Message		Serial Connection Enumeration		Alternate Modes of Operation		Modify Reporting Message	
	_		Modify Tag		I/O Module Enumeration				Block Report	ing Message
			Modify Control Logic		Remote System Discovery				Spoof Report	ing Message
			Modify Physical Device Display		Network Service Scanning				Modi	у Тад
			Modify HMI/Historian Reporting						Modify Co	ntrol Logic
			Modify Parameter						Device S	nutdown
									Modify P	arameter
									System F	irmware
									Modify Comn	and Message

We don't know where we are in this model just yet :-)

Secura

Overview of Stages

Access

- Target facility
 - Discovery
 - Access to needed assets
 - Attack execution
- Trusted 3rd party (staging target)
 - Access to target facility
 - Access to needed assets
 - Process comprehension
- Non-targeted/Opportunistic

⊘Secura

Targeting

- There are few known cases of strategic targeting
- Target might be also selected as best suitable certain criteria
- Collateral victim
- Opportunistic

Venezuela, 2019

- Suspected cyber-attack on Guri hydroelectric power plant
- Produces 80% of country's electricity
- Details of plant's upgrade are publicly available, including possible remote access

29

Venezuela, 2019

Ukraine, 2016

- INDUSTROYER malware was deployed to shutdown electricity distribution at Pivnichna substation
- There is no strong indications that victim substation was strategic target
- Details of substation upgrade are publicly available

Ukraine, 2016

Targeted by

malware

Pource

https://www.schneiderelectric.com/ww/en/Images/tricon-IC-654x654.jpg

Saudi Arabia, 2017

- TRITON malware targeted Safety Instrumented Systems at petrochemical plant
- There is no strong indication that TRITON victim was strategic target
- Affected site could have been used as live drill and testing platform before attacking strategic target

© 2019

nttps://www.schneider-electric.com/ww/en/Images/tricon-IC-654x654.jpg

Saudi Arabia, 2017

NEWS

July 2006

Invensys wins Qatar, Iraq contracts

16.02.2003 · Triconex, a supplier of products, systems and services for safety, has received contracts from Jubail United Petrochemical (JUPC) of Saudi Arabia, to provide critical safety and turbomachinery control

yJ	tern opgrade riojeet
ently h Kor	process control systems, each consisting of a DCS (CENTUM CS 3000),
cont d wa	emergency shutdown system (Triconex), vibration monitoring system
ion c bom	(Bently Nevada), and field instrumentation.

was

nd testing

Role of OSINT in Targeting

- The Internet is full of proprietary and confidential industrial documentation.
- Discovering helpful information about certain industrial facility may provoke targeting

RESOURCES FOR SEARCHING AND INALYZING ONLINE INFORMATION FIFTH EDITION

MICHAEL BAZZELL

Role of OSINT in Targeting

Targeting 3rd parties (supply chain)

- Getting access to into target facilities
- Getting access to needed assets/equipment,
 - -E.g. through maintenance support contracts
- Obtaining information related to target or potential victims
 - Engineering/networking/config documentation
 - -User application (control logic), etc.

National Advisories on the Threat

Russian Government Cyber Activity Targeting Energy and Other Critical Infrastructure Sectors

Original release date: March 15, 2018 | Last revised: March 16, 2018

This campaign comprises two distinct categories of victims: staging and intended targets. The initial victims are peripheral organizations such as trusted third-party suppliers with less secure networks, referred to as "staging targets" throughout this alert. The threat actors used the staging targets' networks as pivot points and malware repositories when targeting their final intended victims. NCCIC and FBI judge the ultimate objective of the actors is to compromise organizational networks, also referred to as the "intended target."

https://www.us-cert.gov/ncas/alerts/TA18-074A

Advisory: Hostile state actors compromising UK organisations with focus on engineering and industrial control companies

https://www.ncsc.gov.uk/news/ho stile-state-actors-compromisinguk-organisations-focusengineering-and-industrial-control The NCSC is aware of an ongoing attack campaign <mark>against multiple companies</mark> involved in the <mark>CNI supply chain</mark>. These attacks have been ongoing since at least March 2017. The targeting is focused on

National Advisories on the Threat

Alert (TA18-074A)

Russian Government Cyber Activity Targeting Energy and Other Critical Infrastructure Sectors

15. Mai 2018, 17:51 Uhr EnBW-Tochter

This ca supplie malwar networ

janizations such as trusted third-party argets' networks as pivot points and o compromise organizational

^{https:} Hacker "einen kleinen Teil des Internetverkehrs des besagten Netzes gespiegelt", teilte EnBW mit. Auf die Router hatten die Hacker Zugriff, weil sie zuvor das Mitarbeiterkonto eines externen Dienstleisters übernehmen konnten.

control companies

https://www.ncsc.gov.uk/news/ho stile-state-actors-compromisinguk-organisations-focusengineering-and-industrial-control The NCSC is aware of an ongoing attack campaign <mark>against multiple companies</mark> involved in the <mark>CNI supply chain</mark>. These attacks have been ongoing since at least March 2017. The targeting is focused on

Data Exposure is Penalizable in Regulated Facilities

- NERC CIP-003-3 standard
- Sensitive utility's network infrastructure data were exposed via server of thirdparty service provider

⊘Secura

DATA EXPOSURE BY VENDOR LEADS TO \$2.7 MILLION NERC PENALTY FOR UTILITY

March 09, 2018

A seven-figure penalty reported by the North American Electric Reliability Corporation demonstrates the potentially severe consequences for electric utilities related to improper data handling practices and underscores the challenges in preventing and resolving unauthorized disclosures.

A public filing by the North American Electric Reliability Corporation (NERC) on February 28 reported that an unidentified electric utility agreed to pay a \$2.7 million penalty to resolve violations of the Critical Infrastructure Protection (CIP) reliability standards related to the exposure of sensitive data. While settlement agreements

Role of Access Stage

- Access stage largely defines the selection of damage scenario
 - <u>Access driven</u>
 - –E.g., obtained access to specific equipment
 via 3rd party remote maintenance contract
 - Did not manage to access Safety Systems
 - Information driven
 - –E.g., obtained specific information about unhealthy state or repairs of equipment

Discovery

- Network reconnaissance
 - Majority of this stage is similar to traditional IT recon process/attack life cycle, tools may differ
 - Information enumeration
- Process comprehension
 - Understanding exactly what the process is doing, how it is built, configured and programmed

On the Significance of Process Comprehension for Conducting Targeted ICS Attacks

© 2019

Benjamin Green Lancaster University Lancaster, United Kingdom b.green2@lancaster.ac.uk

Marina Krotofil Hamburg University of Technology Hamburg, Germany marina.krotofil@tuhh.de Ali Abbasi University of Twente Enschede, Netherlands a.abbasi@utwente.nl

http://eprints.lancs.ac.uk/88089/1/sample_sigconf.pdf

Discovery

- Network reconnaissance
 - Majority of this stage is similar to traditional IT recon process/attack life cycle, tools may differ
 - Information enumeration

On the Significance of Process Comprehension for Conducting Targeted ICS Attacks

Benjamin Green Lancaster University Lancaster, United Kingdom b.green2@lancaster.ac.uk

VSE

© 2019

Marina Krotofil Hamburg University of Technology Hamburg, Germany marina.krotofil@tuhh.de Ali Abbasi University of Twente Enschede, Netherlands a.abbasi@utwente.nl

Process Comprehension

Discovery

Network

http://eprints.lancs.ac.uk/88089/1/sample_sigconf.pdf

Control

- Least understood and studied stage among all
- It is about discovering:
 - Dynamic model of the process and its limits
 - Ability to control process
 - Attack effect propagation
 - Active stage in live environment

ACTION

FEEDBACK

Case Study: Water Treatment Plant

Use Case: Killing UF Filter in Water Treatment Facility

Acknowledgement: Sridhar Adepu and Prof. Aditya Mathur, SUTD, Singapore for conducting an experiment for this talk

https://itrust.sutd.edu.sg/testbeds/secure-water-treatment-swat/

Use Case: Killing UF Filter in Water Treatment Facility

- Water treatment process consists of multiple stages, including several stages of filtering
 - Water filters are expensive
 - When broken, water supply is interrupted

UF Filtering: HMI Screen

UF Filtering: PI&D Diagram

UF Backwash: HMI and PI&D Diagram

How Do We Pull This off?

- There are tree conditions which can trigger backwash process, each guided by a state machine
 - Preset timer (every 30 minutes)
 - UF filter differential pressure (DP) ≥ 40 kPa
 - Plant shutdown

How Do We Pull This off?

- There are tree conditions which each guided by a state machine
 - Preset timer (every 30 minutes)
 - UF filter differential pressure (DP
 - Plant shutdown

_MV301_AutoInp :=0; MV302 AutoInp :=1; MV303 AutoInp :=0; MV304 AutoInp :=0; _P_UF_FEED_DUTY_AutoInp :=1; P602_AutoInp :=0; _P_NAOCL_UF_DUTY_AutoInp:=0; HMI UF REFILL SEC :=0; HMI_BACKWASH_SEC :=0; HMI_CIP_CLEANING_SEC :=0; HMI_DRAIN_SEC :=0; IF HMI_TMP_HIGH THEN HMI P3 STATE:=8; ELSE IF _MIN_P THEN HMI_UF_FILTRATION_MIN:= HMI_UF_FILTRATION_MIN+1; END IF; END_IF;

7:(*FILTRATION FOR PRESET TIMER*)

_LAST_STATE:= HMI_P3_STATE;

How Do We Pull This off?

- There are tree conditions which each guided by a state machine
 - Preset timer (every 30 minutes)
 - IIF filter differential nressure (NP

7:(*FIL	TRATION FOR PRESET TIMER _LAST_STATE:= HMI_P3_ST	*
	_MV301_AutoInp _MV302_AutoInp _MV303_AutoInp _MV304_AutoInp _P_UF_FEED_DUTY_AutoInp _P602_AutoInp	:=0; :=1; :=0; :=0; :=1; :=0;

4	Message Configuration - P6_P602_CMD_MSG	Jump To Subroutine Routine Name UF_Feed
5	Configuration Communication Tag Message Type: CIP Data Table Write Image: Cip Data Table Write Source Element: P6_P602_AUTOINP Image: Cip Data Table Write	MSG Message Message Control P6_P602_MSG(EN)(ER)
6	Number Of Elements: 1 Destination Element: P6_P602_AUTOINP	MSG
7	Enable O Enable Waiting Start O Done Length: 0 Error Code: Extended Error Code: Timed Out	MSG
8 <u>P2_P2078_CMD_MSG.EN</u> 8 <u> </u>	Error Path: Error Text: OK Cancel Apply Help	MSG

One Possible Attack Execution Scenario

Control Stage of Process Comprehension

- Average UF filter DP is \approx 12-13 kPa
- Max DP is 98 kPa, reached in 8 sec
- Process recovery (return to normal) is 5 sec
- Note, this data still does not tell us whether this pressure kills the UF filter and how quickly

Differential Pressure DPIT301 КРа 50 :15:06 :15:16 :15:20 :15:22 :15:24 :15:26 :15:30 :15:34 :15:38 :15:52 :15:56 :15:08 :15:40 :15:48 :15:54 :15:58 15:36 :15:44 15:42 15:46 15:50 PZ PN PN PN P PN PN P PN P PN PZ PN P lime

Secura

Control Stage of Process Comprehension

- Average UF filter DP is ≈ 12-: ALARM MANAGEMENT GUIDELINES
- Max DP is 98 kPa, reach
- Process recovery (returr
- Note, this data still does the UF filter and how qu

КРа

⊘Secura

Damage

- Requires subject-matter knowledge (engineering)
- Cant take several forms
 - Explosions (of course!)
 - Equipment breakage
 - Pollution
 - Product Out of Specification
 - Increased production costs, etc.

https://img.izismile.com/img/img5/20120306/640/chemical_plant_accident_in_germany_640_04.jpg

Attack Design != Implementation Success

Cleanup

- In traditional hacking it is possible to execute the entire attack without being ever detected
 - In process control it is not an option because of physical effect
- Create forensic footprint of what the investigators should identify as cause of the incident/accident

-E.g. time attack to process troubleshooting

Why Implant?

Implant

"Hardware or software modification designed to gain unauthorized control over specific system functionality."

OT Payload

"Digital implementation of (part of) a cyber-physical attack"

Why Implant

 Why not just modify control logic / change setpoints / send malicious command?

- For more complicated attacks
 - Coordination, Feedback, Speed, Low-level functionality access

- Many scenarios possible without implants
- Eg. Ukraine 2015 & 2016
 Secura

Where to Implant?

How to Implant?

We want smooth native code execution

- Need access to low-level, privileged functionality
 - Memory-/Port-Mapped IO (MMIO/PMIO)
 - Kernel memory objects
 - Logic runtime memory
 - Persistence mechanisms

Ideally via silent hot-patching

No reboots, no service restarts, no process upsets
 Secura

PLC 101 - Architecture

Standalone

Modular

Power Supply, CPU, I/O, Comms, ...

PLC 101 - Backplane

Inter-Module Databus

Multibus, P-Bus, VMEbus, X-Bus, STD-32, PCIe, ...

PLC 101 – CPU Module Internals

©Secura

PLC 101 – Boot Sequence

PLC 101 – Logic Program Execution

PLC 101 - Scan Cycle

©Secura

Implant Access

© 2019

© 2019

Implant Design Considerations

Active Implant	Dormant Implant	Persistence	Memory Residence
 Includes OT payload 	 OT payload delivered later 	 Complicated by code signing 	 No reboot survival
 Limits detection / network forensics exposure 	• Limits forensics exposure	 Need ability write to flash & enough space 	 Limits forensics exposure

We want scalability

- Target different vendors' systems with similar implant functionality
- **EMERSON** Honeywell

- But limited number of players out there
 - Eg. construct arsenal of generic templates for key DCS & safety controllers
 - One-time upfront investment, no huge turnover

SMART

Complication: Heterogeneity

© 2019

Security

Features

Complication: In-House vs Commercial

Example: Triconex SIS

 In-House OS + Runtime, different processors & OS variants between versions of same product

Complication: Resource Constraints

- MPC860, 50 MHz
- 6 MB Flash
- 16 MB DRAM
- 32 KB SRAM

Will need to fit implant in there

• Signals processing? Malicious logic? Comms?

Often stretched by normal

functionality already

⊘Secura

You better enjoy

• ARM9, 14 MHz

programming...

TREME

- 512 KB Boot Flash
- 8 MB RW Flash
- 2 MB SRAM

Complication: Security Engineering

Programming Key-locks

Secura

87

Case Study: TRITON

TRITON / Trisis / HatMan (2017)

TRITON Attack Overview

50

https://www.cyberark.com/threat-research-blog/anatomy-triton-malware-attack/

TRITON injects 'dormant' implant into Triconex controller memory "Your wish is

trilog.exe

• script_test.py

- library.zip
- inject.bin
- imain.bin

TriStation Engineering Protocol

my command"

Logic Download (compiled for PPC, executed on CPU)

"Execute my shellcode please"

MPC860

Why not just modify firmware?

Firmware Download (FC 0x50: unauthenticated, unsigned)

Controller reboots into download mode, logic execution interrupted!

Logic Append (FC 0x01: unauthenticated, unsigned)

⊘Secura

New logic appended to circular linked program list, **logic continues running!** ⁹²

Implant Installation

• Safety program executed in *user* mode

- Need supervisor to flush icache & apply mods
- Privilege level set in PPC MSR register, NW for *user*

93

Stage 2: Privilege Escalation

 Exploit syscall 0x13 (SOE Status) to modify MSR while in *supervisor* mode, set saved MSR bit

 No memory permissions, can write anywhere in user mode, including kernel globals. Exploit write-what-where.

bl stw

b1

stw

b1

lwz

lwz

stw

lwz

lhz

sth

li

stw

addi

stw

addi

stw

lwz

lwz

stw

lwz

li

mr

sth

addi

set r3 19AC68

 $r_{3}, 0x40(r_{31})$

set r3 ffd232 r3, 0x30(r31)

set r3 ffb104

r9, 0x34(r31) #

r0, 0x48(r31) #

r9, 0x30(r31) #

r0, 0x44(r31) #

r0, 0x1C(r31) #

r0, r31, 0x38 #

r0, 0x14(r31) #

r0, r31, 0x3C #

r0, 0x18(r31) #

r9, 0x34(r31) #

r11, 0x40(r31)

r0, r11, -0x12

r9, 0x30(r31) #

r0, 0(r9)

r0, 0(r9)

r0, 1

r3, r0

r0, 0(r9)

r0, 0(r9)

r0, 1

Stage 2: Disable RAM Check

Patch jumptable entry

Stage 2: Modify Network Command Handler

li

stw

stw

b1

b1

li

b1

sth

- Entry 0x1D (Get MP Status)
- Allows for network comms

r0, 0xCC # Load Immediate r0, 0(r27) # Store Word patch_jump_table_entry # Branch r25, 0(r3) # Store Word patch_ram_check # Branch r4, 0x4800 # Load Immediate r4, 0(r3) # Store Half Word flush_instruction_cache # Branch

default_handler, imain_bin_start_reloc, default_handler, c
 CB8, loc_39C88, loc_39CE8, loc_39E38, loc_39D78, loc_39D78,

Stage 3: Implant

* ICS-CERT MAR-17-352-01 HatMan-Safety System Targeted Malware (Update A)

Stage 3: Implant

* ICS-CERT MAR-17-352-01 HatMan—Safety System Targeted Malware (Update A)

Stage 4: OT Payload

- Once implant is injected we have dormant 'god mode'
 - Arbitrary *supervisor* RWX over network

• Deliver OT payload at later moment

Not recovered from incident, but we can speculate ...

AGENDA

- 1. Introduction
- 2. Cyber-Physical Attack Lifecycle
- 3. Implants
- 4. OT Payloads
- 5. Conclusion

I/O Manipulation

I/O Manipulation

Simple concept, non-trivial execution

- Many different approaches
 - Depends on how IO image tables are populated, how IO is wired to chip executing logic
 - Different technical ways to achieve same goal

* Ghost in the PLC – Ali Abbasi & Majid Hashemi, BlackHat EU 2016

www.kenosha-reuse.com

I/O Manipulation

© 2019

Complication: Field Device Limitations

- Cyber limitations might be placed on theoretically feasible functionality for protective reasons*
 - Valve closing speed
 - Non-digitally alterable VFD skip frequences

Prevents IO manipulation from achieving desired result

- Overcoming this requires implanting field device
- Patch out limitations / sanity checks

Alarm Suppression

Alarm Suppression

Again: simple concept, non-trivial execution

- We want to prevent an outgoing alarm being raised or incoming alarm being acted upon
- Might require very different approaches
 - Alarm raised with dedicated protocol message
 - Alarm signal via IO
 - Alarm bit in flag accompanying read PV

⊘Secura

ALARN

Alarm Propagation

Hiding Alarms

© 2019

Suppressing Alarms

Example: Simple water tank level alarm

Safety program resides in memory as code, modify to set *alarm* to **fixed false**

Secura

Finding Instructions to Patch

Hot-Patching Safety Program

1i	r28,	0
stw	r28,	-4(r2)
lis	r27,	_water_high@ha
lwz	r28,	_water_high@l(r27)
clrlwi	r28,	r28, 31 # r28 := water_high
lis	r26,	_water_low
lwz	r27,	_water_low(r26)
clrlwi	r27,	<u>r27, 31 # r27 := water low</u>
1i	r26,	0 # alarm := FALSE
addi	r27,	r2, -4
-		
lwz	r28,	0(r27)
lwz insrwi		0(r27) r26, 1,31
	r28,	
insrwi	r28, r28,	r26, 1,31
insrwi stw	r28, r28, r28,	r26, 1,31 0(r27)
insrwi stw lwz	r28, r28, r28, r28,	r26, 1,31 0(r27) -4(r2)
insrwi stw lwz clrlwi	r28, r28, r28, r28,	r26, 1,31 0(r27) -4(r2) r28, 31 _alarm
insrwi stw lwz clrlwi lis	r28, r28, r28, r28, r26, r26,	r26, 1,31 0(r27) -4(r2) r28, 31 _alarm
insrwi stw lwz clrlwi lis mr	r28, r28, r28, r28, r26, r26, r27,	r26, 1,31 0(r27) -4(r2) r28, 31 _alarm r26

© 2019

⊘Secura

Alarm Suppression

Alarm Relaxation & Tightening

Why relax or tighten instead of suppress?

- Don't prevent alarm from being raised but change conditions
 - Limits, deadband, priority

Relax: Stealth during scheduled testing

Tighten: Cause hard-to-resolve alarm storms

Hook functionality that decides whether to raise alarm

- Can be data (limit, priority, deadband): overwrite in RAM
 - Make sure to spoof values when gueried!

• Or code (alarm logic): patch instructions

	STR	R3, [SP,#0x60+var_40]
	ADD	R5, SP, #0x60+var_28
	MOV	R3, #0
	STR	R3, [R5,#-4]!
	MOV	R0, #0x18
	LDR	R1, =aRtalarmlistatt ; "RtAlarmListAttribute.cpp"
⊘Secura	LDR	R2, =0x19B
	ADD	R3, R3, #2
© 2019	BL	init_object

119

Implant Communication

Expectation vs Reality

1 2018-03-20 14:05:51.071836 192.168.1.88	192.168.1.2	TRISTATION	48 33279	→ 1502	Len=6		
2 2018-03-20 14:05:51.082132 192.168.1.2	192.168.1.88	B TRISTATION	64 1502	→ 33279	Len=6 [ET	HERNET	FRAME CHECK SEQUENCE
3 2018-03-20 14:05:51.090787 192.168.1.88	192.168.1.2	TRISTATION	58 33279	→ 1502	Len=16		
4 2018-03-20 14:05:51.239848 192.168.1.2	192.168.1.88	B TRISTATION	244 1502	→ 33279	Len=202		
5 2018-03-20 14:05:51.240762 192.168.1.88	192.168.1.2	TRISTATION	66 33279	→ 1502	Len=24		
6 2018-03-20 14:05:51.437740 192.168.1.2	192.168.1.88	B TRISTATION	380 1502	→ 33279	Len=338		
	192.168.1.2	TRISTATION	66 33279	→ 1502	Len=24		
8 2018-03-20 14:05:51.614398 192.168.1.2	192.168.1.88	B TRISTATION	168 1502	→ 33279	Len=126		
9 2018-03-20 14:05:51.615164 192.168.1.88	192.168.1.2	TRISTATION	66 33279	→ 1502	Len=24		
10 2018-03-20 14:05:51.836427 192.168.1.2	192.168.1.88	B TRISTATION	1092 1502	→ 33279	Len=1050		
	192.168.1.2	TRISTATION	66 33279				
	192.168.1.88					THERNET	FRAME CHECK SEQUENCE
	192.168.1.2	TRISTATION	66 33279				
	192.168.1.88		592 1502				
	192 168 1.2	TRISTATION	66 33279				
▶ Frame 4: 244 bytes on wire (1952 bits), 244 bytes captured		00 00 0c 29 28 dd	c5 40 00 0	0 00 00	02 08 00)(@E.
Ethernet II, Src: 40:00:00:00:00:02 (40:00:00:00:00:02), Ds	t: Vmwa 00						
Internet Protocol Version 4, Src: 192.168.1.2, Dst: 192.168	.1.88 000					01 01	,×
▶ User Datagram Protocol, Src Port: 1502, Dst Port: 33279	001				00 0d 00 00 40 00	01 01	l=@
TriStation Protocol	00				20 00 20		`Р
<pre>v TCM communication:</pre>	00			0 00 c8		b9 00	
5 [COMMAND REPLY]	00	70 5c 98 00 00 02	00 fa 75 a	b 5a 4e	4f 5a 4f	4d 49	\u .ZNOZOMI
Channel: 0	00				00 00 00		
data len: 196	009					06 00	
<pre>TS communication:</pre>	00				00 00 00 00		•••••
<pre>path: 1 [Controller> Workstation]</pre>	00				00 00 00		
cid: 1	00				00 4d 61		dd.iBMana
Command: 108 [Get CP status response]	00	e0 67 65 72 00 00	00 00 00 0	0 00 00	00 00 00	00 00	ger
unk: 256	00.	f0 00 00 1a a5					
loadIn: 0							
modIn: 0							
loadState: 13							
singleScan: 0							
cpValid: 1							
keyState: 0x01 [Program]							
runState: 0x00 [Running]							
my: 128							
us: 2147483648							
ds: 1073741824			1				
heapMin: 1610612816							
heapMax: 4261478319							
fstat: 0							
project_minor: 23704							
project_minor: 0							
project_timestamp: 33618549							
project_timestamp: 33618349 project: NOZOMI							
project: NOZUMI							

These can be in completely different parts of the process, on different networks

Might not see much electronic chatter after implanting

Process state change detection

Non-Parametric Cumulative Sum (NCUSUM)

check(double):
 stwu 1,-48(1)
 mflr 0
 stw 0,52(1)
 stw 31,44(1)
 mr 31,1
 stfd 1,24(31)
 lfd 1,24(31)
 lfd 1,24(31)
 bl compute_score(double)
 stfd 1,8(31)
 lis 9,m_current_sum@ha
 lfd 12,m_current_sum@l(9)

17640 bytes ~= 0.11% of DRAM (unoptimized)

$$S_i^+ = \max(0, |X_{i-1} - X_i| + S_{i-1}^+)$$

$$S_i^- = \max(0, |X_i - X_{i-1}| + S_{i-1}^-)$$

* CPS: Driving Cyber-Physical Systems to Unsafe Operating Conditions by Timing DoS Attacks on Sensor Signals – M. Krotofil et al. * <u>https://github.com/sysml/blockmon</u>, <u>https://godbolt.org/</u>

AGENDA

- 1. Introduction
- 2. Cyber-Physical Attack Lifecycle
- 3. Implants
- 4. OT Payloads
- 5. Conclusion

Conclusion

Marina

Jos

Appreciation

Sridhar Adepu & Prof. Aditya Mathur

SINGAPORE UNIVERSITY OF TECHNOLOGY AND DESIGN

• Jason Larsen

