

Hardware Side Channel Attacks .. on the cheapiest!

Albert Spruyt Alyssa Milburn

Alyssa

PhD student

Unemployed

@noopwafel

2

- Side Channel Analysis
- (Cheap) Hardware
- Demos!
- A bit of Fault Injection

Side Channel Analysis is full of...

You can talk to us later to learn more!

High-level overview

- **Attackers need:**
 - **Physical access**
 - Some input (or output)

The context

- Smartcards
 - credit cards, access cards, passports

- Secure microcontrollers
 - crypto wallets, U2F/YubiKey

- Random IoT devices
 - lightbulbs, ...

Why care about side channels?

for (n: 1 → 4) if (secret_pin[n] != input[n]) fail();

How do we measure power?

Oscilloscope

Power cut!

12

Today's target

Arduino Nano

- 16 Mhz
- ~3-5 euro
- Not secure

Real power cuts

Real power cuts

Big picture

What's going on?

1/0/1/0

Hamming weight

0x00: 0000000

 \rightarrow hamming weight 0

0x05: 00000101

 \rightarrow hamming weight 2

OxFF: 11111111

→ hamming weight 8

0x11: 00010001

 \rightarrow hamming weight 2

- Calculate with (random) bytes
- Take power traces

Can we match the **Hamming Weight** of the byte to the power traces?

Hamming weight

- Power profiles based on different data
- Averaged
- We can see the data being processed!

Source: Side channel analysis, practice and a bit of theory. Ilya Kizhvatov

We're going to steal encryption keys

- Everyone needs to have keys

Super secure encryption

AES-128: unbroken and secure

AES trace

Bvte 1	Key addition	Sbox	
, -	Key addition	Sbox	
	Key addition	Sbox	
8vte 16	Key addition	Sbox	

Вy

Single byte only

We can look at each byte separately!

Single byte only

- Only 256 possible key bytes
 - Try them all!

The master plan

- For every key guess:
 - For each input:
 - Calculate Hamming Weight after the S-box
 - Compare that with the actual **leakage**
- Pick the guess with the best fit!

Correlation Power Analysis

• Open source: JLSCA

- Does CPA for us
- Also supports fancier attacks
- Runs fast on a cheap laptop

(Thanks Cees!)

New plan

Oscilloscope?

34

LeCroy WaveRunner \$17 000 PicoScope 3406D \$2 500 Rigol DS1054Z \$500

Previous Work

ChipWhisperer\$250Hantek USB oscilloscope\$60ChipWhisperer Nano..?\$50

Solving our hardware woes

Let's build an awesome, cheap scope!

Let's hack something together!
What do we need?

- GPIO to trigger
- ADC to measure
- Memory to store measurements

HorrorScope

Atmel XMEGA

- USB 2.0
- 12-bit ADC @2 MSPS

Bill of Materials (BOM)

~5 euro ex. VAT

Xmega:2.50eurPCB:1eur

Funny story 1

More problems Design considerations

Sampling below Nyqist frequency

SAMPLING CLOCK

Nano:16MhzOur ADC:2Mhz

Source: http://blog.teledynelecroy.com/2013/06/back-to-basics-sampling-rate.html

Xmega datasheet

28. ADC – 12-bit Analog to Digital Converter

28.1 Features

- One Analog to Digital Converter (ADC)
- 12-bit resolution
- Up to two million samples per second

Just a suggestion

More problems Design considerations

No analog front-end

DC offset, resolution, noise, ...

- AC coupling, use AREF

Funny story 2

Coding is hard

More traces!

100 traces averaged: A wild AES appears!

So: let's try it!

Real world setup

We have:

"Target": Arduino Nano + AES

"Oscilloscope": HorrorScope

How does the scope know when to measure?

- Not enough SRAM to sample all the time
- We need to sync the scope to the target

So, whats the last thing we control?

- Sending the input

Triggering plan

HorrorScope measuring procedure

- Send command to Scope (arm)
- GPIO pin turns high
- Actually start measuring

- Connect Scope GPIO pin to RX on Nano

When to start measuring ...

Collect traces...

We need a lot of traces

- Make sure the first/or last round is in view
- Select a high Sample speed
 - Ensure there's a margin before/after the round

• AES: initial round, 9 rounds, a final round

Acquiring Traces ...

.... Here's one we made earlier

Traces are bad

Why are they bad?

What's wrong?

Misalignment

Signal spread

well aligned traces

misaligned traces

Source: Side channel analysis, practice and a bit of theory. Ilya Kizhvatov

Aligned

Thank you JLSCA!

Why is alignment important?

Before

after

Let's get keys

- DEMO
 - Jupyter notebook

Comparing the scopes

Vds1022 (\$70):

~1.5k traces

HorrorScope:

~30k traces

 How many mistakes can we make before it doesnt work?

Silkscreen-Off-By-One

People told us the Xmega ADC was bad

Funny story 3

1000 averaged, no alignment

Strength in numbers

- Side Channel Attacks require overcoming the noise
- Noise can be reduced through taking more traces, but not in every case

Fault Injection

HorrorScope can sort of power the Nano

- The Nano wants 5v
- Xmega GPIO pins provide 3.2v

Powering the Nano

Ok faults, now what?

- Perform Fault Injection and Differential Fault Analysis
- Inject faults into AES and recover the key

What can you do about it?

Threat model

Do you *need* to resist physical attacks?
Best defense: make sure it doesn't matter!

Basic steps

Use hardware with built-in countermeasures
.. and check it with a (Horror)scope :)

(or a ChipWhisperer)!

Hardware attacks are cheaper than we thought

 Side Channel Analysis is something you can do at home - and you should try it

Special Thanks

Cees-Bart 'ceesb' Breunesse

- https://github.com/Riscure/Jlsca

• Rafa Boix Carpi

- For saying it can't be done
- Ilya Kizhvatov
 - Letting us steal his pictures
- Workshop attendees
 - For their feedback and love

https://github.com/albert-spruyt/HorrorScope/

Provided: power traces and Jlsca notebook. You should now be able to get the key!

(Also in the repo: schematics/source/etc)

.. we're hoping for a port to the STM32 – SCA for \$2?

Hamming weight

- Power profiles based on different data
- Averaged
- We can see the data being processed!

Source: Side channel analysis, practice and a bit of theory. Ilya Kizhvatov

Power cut: easy?

Power cut: UFO

