Embedded & Hardware Team / nc

Old New Things: An examination of the Philips TriMedia architecture

Quark

SECURING EVERY

WARNING'

ADULT LANGUAGE
SENSITIVE SUBJECT MATTER

* Introduction
* Presentation
* Tell the story ...

* Previous work

 Analysis of the device
* Basic firmware analysis
* Exploring the attack surface
* Hardware exploration

* The Philips TriMedia CPU

* History
e Sources of information
* Tools and hardware

* The PNX1300EH CPU
* ASM and instruction set
* Compression scheme
 Disassembling the code

e TODO
e Conclusion

Introduction

* Nahuel Riva from General Pico, La Pampa, Argentina
e Currently working on the Embedded Hardware Team @ Quarkslab
* Previously @ Core Security doing Exploit Development for 10 years
» Before Core, | used to break software protections

* | like infosec, reverse engineering, ASM, dogs, Asado, beer,
tattoos, bodybuilding from the 70’s

* A lot of other things ...

QP |
Introductio

Tell the story ...

OKAY I'MiPREPARED
-’ \|
: o~

» ’
o~ "
-8 ‘ - : \
' | > v
|

Previous work

* There’s not much work done about TriMedia (publicy available, of
course)

* The only resource | found was at
https://hackingbtbusinesshub.wordpress.com/ (not available
anymore since 2015)

e Valuable information about 2Wire routers hacking

 https://blog.quarkslab.com/reverse-engineering-a-philips-trimedia-
cpu-based-ip-camera-part-1.html

 https://blog.quarkslab.com/reverse-engineering-a-philips-trimedia-
cpu-based-ip-camera-part-2.html

https://blog.quarkslab.com/reverse-engineering-a-philips-trimedia-cpu-based-ip-camera-part-1.html
https://blog.quarkslab.com/reverse-engineering-a-philips-trimedia-cpu-based-ip-camera-part-1.html
https://blog.quarkslab.com/reverse-engineering-a-philips-trimedia-cpu-based-ip-camera-part-1.html
https://blog.quarkslab.com/reverse-engineering-a-philips-trimedia-cpu-based-ip-camera-part-1.html
https://blog.quarkslab.com/reverse-engineering-a-philips-trimedia-cpu-based-ip-camera-part-1.html
https://blog.quarkslab.com/reverse-engineering-a-philips-trimedia-cpu-based-ip-camera-part-1.html
https://blog.quarkslab.com/reverse-engineering-a-philips-trimedia-cpu-based-ip-camera-part-1.html
https://blog.quarkslab.com/reverse-engineering-a-philips-trimedia-cpu-based-ip-camera-part-1.html
https://blog.quarkslab.com/reverse-engineering-a-philips-trimedia-cpu-based-ip-camera-part-1.html
https://blog.quarkslab.com/reverse-engineering-a-philips-trimedia-cpu-based-ip-camera-part-1.html
https://blog.quarkslab.com/reverse-engineering-a-philips-trimedia-cpu-based-ip-camera-part-1.html
https://blog.quarkslab.com/reverse-engineering-a-philips-trimedia-cpu-based-ip-camera-part-1.html
https://blog.quarkslab.com/reverse-engineering-a-philips-trimedia-cpu-based-ip-camera-part-1.html
https://blog.quarkslab.com/reverse-engineering-a-philips-trimedia-cpu-based-ip-camera-part-1.html
https://blog.quarkslab.com/reverse-engineering-a-philips-trimedia-cpu-based-ip-camera-part-1.html
https://blog.quarkslab.com/reverse-engineering-a-philips-trimedia-cpu-based-ip-camera-part-1.html
https://blog.quarkslab.com/reverse-engineering-a-philips-trimedia-cpu-based-ip-camera-part-1.html
https://blog.quarkslab.com/reverse-engineering-a-philips-trimedia-cpu-based-ip-camera-part-1.html
https://blog.quarkslab.com/reverse-engineering-a-philips-trimedia-cpu-based-ip-camera-part-1.html
https://blog.quarkslab.com/reverse-engineering-a-philips-trimedia-cpu-based-ip-camera-part-1.html
https://blog.quarkslab.com/reverse-engineering-a-philips-trimedia-cpu-based-ip-camera-part-1.html
https://blog.quarkslab.com/reverse-engineering-a-philips-trimedia-cpu-based-ip-camera-part-1.html
https://blog.quarkslab.com/reverse-engineering-a-philips-trimedia-cpu-based-ip-camera-part-2.html
https://blog.quarkslab.com/reverse-engineering-a-philips-trimedia-cpu-based-ip-camera-part-2.html
https://blog.quarkslab.com/reverse-engineering-a-philips-trimedia-cpu-based-ip-camera-part-2.html
https://blog.quarkslab.com/reverse-engineering-a-philips-trimedia-cpu-based-ip-camera-part-2.html
https://blog.quarkslab.com/reverse-engineering-a-philips-trimedia-cpu-based-ip-camera-part-2.html
https://blog.quarkslab.com/reverse-engineering-a-philips-trimedia-cpu-based-ip-camera-part-2.html
https://blog.quarkslab.com/reverse-engineering-a-philips-trimedia-cpu-based-ip-camera-part-2.html
https://blog.quarkslab.com/reverse-engineering-a-philips-trimedia-cpu-based-ip-camera-part-2.html
https://blog.quarkslab.com/reverse-engineering-a-philips-trimedia-cpu-based-ip-camera-part-2.html
https://blog.quarkslab.com/reverse-engineering-a-philips-trimedia-cpu-based-ip-camera-part-2.html
https://blog.quarkslab.com/reverse-engineering-a-philips-trimedia-cpu-based-ip-camera-part-2.html
https://blog.quarkslab.com/reverse-engineering-a-philips-trimedia-cpu-based-ip-camera-part-2.html
https://blog.quarkslab.com/reverse-engineering-a-philips-trimedia-cpu-based-ip-camera-part-2.html
https://blog.quarkslab.com/reverse-engineering-a-philips-trimedia-cpu-based-ip-camera-part-2.html
https://blog.quarkslab.com/reverse-engineering-a-philips-trimedia-cpu-based-ip-camera-part-2.html
https://blog.quarkslab.com/reverse-engineering-a-philips-trimedia-cpu-based-ip-camera-part-2.html
https://blog.quarkslab.com/reverse-engineering-a-philips-trimedia-cpu-based-ip-camera-part-2.html
https://blog.quarkslab.com/reverse-engineering-a-philips-trimedia-cpu-based-ip-camera-part-2.html
https://blog.quarkslab.com/reverse-engineering-a-philips-trimedia-cpu-based-ip-camera-part-2.html
https://blog.quarkslab.com/reverse-engineering-a-philips-trimedia-cpu-based-ip-camera-part-2.html
https://blog.quarkslab.com/reverse-engineering-a-philips-trimedia-cpu-based-ip-camera-part-2.html
https://blog.quarkslab.com/reverse-engineering-a-philips-trimedia-cpu-based-ip-camera-part-2.html

Analysis of the device

Quark

SECURING EVERY

Qb The device

* D-Link DCS-5300 IP camera
* PAN/TILT zoom (360)
* Microphone
* Motion detection
* Remote control
e Ethernet, WiFi
* Audio and video support
* Remote administration
e UPnP, DDNS, FTP, Telnet
* Etc

Basic firmware ana

astix@bulin:~/dcs-5300$% binwalk dcs5300 firmware_105.bin

HEXADECIMAL DESCR

OXEEEC3
OXEFOF8
OXEF126
OxF3243
OXF33E7
OxF36B1
OXF37CD
OXF3B19
OxF43F7
OxF4400

0x102D97
Ox102F93
Ox10BADO
0x10D509
Ox10D62F
0x10D6BD
0x10D6C5
0x10D748B
0x10D753
0x16D7F1
Ox10E198
0x152304
0x1526CC
Ox152ACF
OXx152F92
0x153031
0x1538C4
Ox153E14
OX153E3F
Ox15BDA6
0x15C2D1

HTML
HTML
HTML
HTML
HTML
HTML
HTML
HTML
HTML
HTML

IPTION

document
document
document
document
document
document
document
document
document
document

HTML document footer

XML document, version: "1
Unix path: fusr/local/etc/zoneinfo
Base64 standard index table

HTML document header

HTML document footer

HTML document header

HTML document footer

HTML document header

HTML document footer
Microsoft Cabinet archive

Certificate in
Certificate in
Certificate in
Certificate 1in

Digl International

DER format
DER format
DER format
DER format

header
footer
header
header
footer
header
footer
header
footer
header

0"

data, 278748 bytes, 1 file

(x509 v3), header length: 4,
(x509 v3), header length: 4,
(x509 v3), header length: 4,
(x509 v3), header length: 4,

firmware, load address: 0x204D6963,

JPEG image data, JFIF standard 1.02
version "89a", 1 x 1
version "89a", 1022 x 124
version "89a", 584 x 8
version "89a", 96 x 96

GIF image data,
GIF image data,
GIF image data,
GIF image data,

sequence length: 964
sequence length: 1023
sequence length: 1215
sequence length: 1269
entry point: 0x66742053,

Basic firmware analysis

* Firmware version: 1.05 (the one installed on the camera)
* Latest available version is 1.06

e Binwalk results:

* binwalk was capable of recognizing some files starting at offset OXEEEC3
* What about the first MB of data?

* Lots of HTML, XML, GIF, JPEG files (for the Web admin interface)
* A CAB file with an ActiveX (useful for IE)

* Some certs

* "Digi International firmware" false positive

* No bootloader or kernel image?
* Generally, they are located at the beginning of the firmware image, not in this case

Basic firmware analysis

SOMETHING WEIRD IS
HAI’I’ENINGQ

Basic firmware a

* Entropy analysis with signatures

= dcs5300_firmware_105.bin % & @ des5300_Firmware_105.bin

HTML document footer

XML document

Unix path: fusrflocal/etc/zoneinfo

Base64 standard index table
Microsoft Cabinet archive data
Certificate in DER Format (x509 v3)
Digi International firmware
JPEG image data

GIF image data

0.8
Offset (MB)

Basic firmware analysis

* First MB of data has high entropy
* Can be compressed or encrypted (we’ll see later)
* Couldn’t identify any common compression algorithm nor any cipher
* Definitely, not a « common » firmware structure

IIDON'T UNDERSTAND
E ’_“

nmap -sV 192.168.1.0/24

Running services:
http (80 tcp)
ftp (21 tcp)
telnet (23 tcp)

commplex-link (5001 tcp)
rfe (5002 tcp)
filemaker (5003 tcp)

Nmap scan report for 192.16
Host is up (0.0010s latency).
Not shown: 994 closed ports
STATE SERVICE VERSION
open fTtp
open telnet
open http D-Link Internet Camera
open commplex-link?
open rfe?
open filemaker?
services unrecognized despite returning data. If you know the
RVICE FINGERPRINT (SUBMIT INDIVIDUALLY)==
=7%D=7/24%Time=5B575F77%P=x86_64- i
-5300\Xx20FTP\x20server\x20ready\.\r\n [
—530®\x2®FTP\x205erver\xzﬂready\T\r\n53®\.20access\x20dcn1
%r(Help,34,"220\x20DCS-5 20FTP\x20server\x20ready\.\r\n53
x20deniedy.\r\n") Neg,34,"220\x20DCS5-5300\x20FTP\x
:20server\x20ready\.\r \n,30\x20acc ss\x20denied\.\r\n");
EXT SERVICE FINGERPRINT (SUBMIT INDIVIDUALLY) ==
- L60%I=7%D=7f24%Time=5B575F77%P=x86_64-pc-linux- gnu.r(NULL
:,26," \xff\xfd\xlaDc -5300\x20Telnet\x20Daemon\r\nPassword\x20:\x20")%r(
3 ,26, "\xffy\xfd\x18DCS-5300\x20Telnet\x20Daemon\r\nPassword\x
[5 3 5300\ x20Telnet\x20Daemon\r\nPass
x20")%r(GetRequ \xff\xfd\ 18DCS-5300\x20Telnet\x20Daem
\r\nPassword\x20:\x20Pas Jord\KZO \x20")%r (RPCCheck,26,"\xff\xfd\x18D
-5300\x20Telnet\x20Daemon\r\nPassword\x20:\x20")%r (Help,31, "\xff\xfd\

SIPOptions,94,"\xff\xfd\x18DCS-5300\x20Telnet\x20Daemon\ r\nPasswc
ord\x20:\x20Password\x20:\x20Password\x20:\x20Password\x20
:\x20Password\x20:\x20Password\x20: xz@Password\ 20:\x20Password\x20:\x
:20Password\x20:\x20Password\x20:\x20") \xFf\xfd\x18DCS-5300\x
\x2@Daemon\r\nPassword\x20: \xzD
=NEXT SERVICE FINGERPRINT (bUBMIT INDIVIDUALLY)
-Port80-TCP:V=7.60% %Time=5B575F77%P=x86_64 pc lanK gnu
equest, 18D, "HTTP/1\.1\

1S c\xz@realm:\"DCS-,399\"\r\nContent-Type:\xzotext;html\ \nServer:\x20D
-Link\KZOInternet\KZGCamera\ \n\ \n HTML. <HEAD=>\n< TITLE,Protcctcd\xza

.\KZOOH\KZOthc\KZO&chcr\KZOI%\KZOprDtcthd\
:PRequest,6E,"HTTP/1\.1\x20405\x20Method\x2

:GET,\KZOHEHD \x20P0OST\r\nContent-Length: \xzoo\r\nServer:\xz@D—Lin \x201
nternet\x28Camera\r\n\rin r(SIPOptions,6E, "HTTP/1\.1\x20405\x26Method
\x20Not\x20Allowed\r\nAll X20GET, \x20HEAD, \x20P0ST\r\nContent-Length
::\x200\r\nServer:\x20D-Link\x20Internet\x20Camera\r\n\r\n");

Exploring the attack surface - Te

astix@bulin:~/dcs-5300S telnet 192.168.1.114
. . rying 192.168.1.114...
e Password is « admin » onnected to 192.168.1.114.

Escape character is '~]'.

* Can’t be changed DCS-5300 Telnet Daemon
Password : admin

° COmmandS: z‘{gorized and start service

° Debug upported commands : _ _
debug : Dump debug information

e Clear dinote : Dump changed input status
stop : Stop dumping debug info and input status

* Reset diquery : Dump current input status
dol=h : Set output 1 to high

* No shell? :/ do1=1 : Set output 1 to low
erase graph : Erase all graphics
erase homepage : Erase custom homepage
lock : Lock network settings
unlock : Reset network settings
clear : Restore factory settings
reset : Restart system
save : Save parameters

Exploring the attack surface - Tel

* Output of « dump » command: | MAC sddress = 00-0D-g8-7E-35-85
: Update FLASH!
L MAC address : Activate Ethernet
: Ethernet link speed is 100Mbps.
° IP address Ethergg '};F(c)hosen
: Host IP=192.168.1.114
* DNS servers : Sgls;net Mask=255.255.255.0
- Default gateway=192.168.1.1
* Status of Telnet, FTP and Web servers Rrlmmy BN senversien R o2u0n

: Secondary DNS server=186.56.20.67
: Video modulation is NTSC

* Undocumented commands: : No logo

: Server starts up

: Server starts up

¢ fanon : No background
: No custom homepage
° fanoff Encode Task start!
Audio Encode Task start!
* newweb (creates new root folder) 765 Cobk o1 duitantecashnan
.« . www:_Server starts up
e suicide (restart the camera) Reboot Timer started

Reboot after 86400 sec = 1day 00hr:00min:00sec
SYS: System starts at 2018/02/27 22:55:30 in local time
[UPNPMiniServer] Bind at port 13396
UPnP started:0
TLN: Stop debugging
-STOP-

Exploring the attack surface — FTP

* Only accesible folder is the « root »

* Some interesting files:
e flash.bin (entire filesystem), only « write » permissions
* system.log (activiy log), only « read » permissions
* config.ini (configuration of the camera, includes Web panel credentials)

Filena%e Filesize Filetype Last modified Permissions Owner/Gro...
e
E config.ini 2,935 Configuration settings 1/772007 %11, -rw-rw-rw- fip fip
Dﬂash.bin 1,592,337 BIN File 1/7/2007 901, —-w--w--w- ftp ftp

| logo.gif 0 GIF File /72017 901, -rw-rw-rw- ftp ftp
system.log 707 Text Document 1772007 1. -r--1--1-- ftp ftp

€ userhtm 0 Chrome HTML Document 11/772017 901:... -rw-rw-rw- fip fip

| video.jpg 0 JPG File N/TR2NT 9 s -r-mr--r-- ftp ftp

| vpos.jpg 0 JPGFile 1/1/2002 =F====f-- ftp ftp
@vpre.jpg 0 JPGFile 1/1/2002 -r--1--T-- ftp ftp

| vtrg.jpg 0 JPG File 1/1/2002 S —— ftp ftp
@wallppr.jpg 62 JPGFile 11/7/2017 9:01:... -rw-rw-rw- ftp ftp

Exploring the attack surface — HTTP

<« C | ® Notsecure 192.168.1.110

D-Link

Building Networks for People SECUR Ic A M N etw orkw
Audio Internet Camera with Pan/Tilt

Tools Status Help

Administrator Settings

Administrator's password
DCS-5300

New password |looo|--ooa|-oo |

Confirm password |-ooo|--ooa|-oo |

Add user

User name | |

User password | |

I} Permission for I/O control

) Permission for PT control Add

Delete user

User name Delete

Guest account

) Allow 'demo’ account to view

Exploring the attack surface — HTTP

e Default Administrator username is « admin » with blank pwd

» Guest account disabled by default

* Gives access to video stream via snapshots
* Guest account username is « demo » with blank pwd

* User-Agent reported by the Web server is « VVTK »
* Could it be the same Web server used in Vivotek IP cameras?
* Yes, in fact, they share (almost) the same CGI API :P

* Some of the CGls were affected by vulns in the past (getparam.cgi,
CVE-2013-1594)
* However, these CGls require authentication to be invoked in the Dlink camera

* Another vuln: CSRF in /setup/security.cgi (CVE-2012-5319), requires
authentication

o

Exploring the attack surface — Mysterious service

* Radio Free Ethernet (RFE) (TCP 5002) is a network audio broadcasting
system. It consists of programs and tools that allow packets of audio
data to be transmitted around a network. The system is best
understood by using the analogy of traditional radio broadcasting [1]

* The camera has an incorporated microphone so this service is probably used
to broadcast the captured audio

* The filemaker (TCP 5003) service is used to stream live video, a kind of
RTP/RTSP service. With the D-ViewCam application, we can access the
audio and video transmitted by the camera. The transmission is done
via HTTP by requesting the video.vam file.

* The commplex-link (TCP 5001) service is used for sync up the audio
and video transmitted by the camera [2]

[1] http://baselinesystems.com/mediafiles/pdf/Ethernet Radio Config Guide.pdf
[2] http://www.dlink.co.in/nl/dcs-over-internet.pdf

http://baselinesystems.com/mediafiles/pdf/Ethernet_Radio_Config_Guide.pdf
http://www.dlink.co.in/nl/dcs-over-internet.pdf
http://www.dlink.co.in/nl/dcs-over-internet.pdf
http://www.dlink.co.in/nl/dcs-over-internet.pdf
http://www.dlink.co.in/nl/dcs-over-internet.pdf
http://www.dlink.co.in/nl/dcs-over-internet.pdf

Exploring the hardware

e Camera has two PCBs:

* One with main components (CPU, RAM, Flash, etc)
e CPU: Philips TriMedia PNX1300EH (32 bit processor)
 SDRAM: Winbond W9812G2DH-7 SDRAM (128 MB)

* Flash memory: 16 MB MX29LV160BBTC-90
* WiFi/Ethernet: RTL8100BL

* EEPROM: Altera EPM3032A

* Video decoder: Philips SAA7113H

* Another one with PTZ functionallity

* Winbond W78E54BP-40
* Two Allegro A3967SLBT chips

Exploring the hardware — 15t PCB - Front & back
\.I \

) b £

k-
, SIETREER ~ .
S AN

-

{yn 0

)s."' "‘ 157+ 1%
-

'umuumu 2

,

e

EEPROI\IE_

‘—— ‘ .z:._JS
?"; 3

. S i g.f
] XIJ' 1§

CAddddddidd

Trll\/led|a CPU l

e I I ITITTH LD

Exploring the hardware — 2" PC

Exploring the hardware - Pinou

g 4
3

,Juﬂuﬂnnﬁnﬂﬂﬂ

L

r79
L e

200000100]

080 ¢
LS
8% W
* ¥
T S
o) 76y L
. !n")!! O
1= li=] = li=lS15]1=

~ -

“ %9 O
S

A

w o S

ry e)
j |n0 s

»-=T

gt ' FEXT] ‘.%%3(51) -
Ei” e = | =]

: 1

- ¥
|,
R

P

)

o
™~
&

i

-
<o

w3
)
(&

'd 4
nli&\'.""'v

y na'.m‘n‘am’m;assmnmm;.~

265 [

" .
L.

e ey :
e fme
o | i
e

£

:
R75
1C129
o
-

WO T Py e
Thew
- :

@ s

——rd

3

Exploring the hardware - Pinout

* Pinout
* In chapter 18 "JTAG Functional Specification” of the specs, we can see that the

TriMedia CPU has a JTAG interface

* Monument Data Systems offers a JTAG PCl debugger

* Philips also offers one but needs a proprietary JTAG cable (It is a USB device that connects to
the PC via a NetChip NET-2282 peripheral controller. The programmer boots from its own
EEPROM and is driven by a Philips PNX1502 CPU with NOR flash and DRAM memory) (*)

* 10 pins marked in red
* Are a little bit far from the CPU, maybe not so interesting
* 12 pins marked in
* More close to the main CPU (some traces seem to be in that direction)

* So, | tried to identify the pinout with .. a voltmeter :/
* Not a very clever idea

(*) Quote from asbokid:
http://web.archive.org/web/20140620185105/http://hackingbtbusinesshub.wordpress.com:80/2011/12/16/the-
proprietary-trimedia-jtag-tools/

http://web.archive.org/web/20140620185105/http:/hackingbtbusinesshub.wordpress.com:80/2011/12/16/the-proprietary-trimedia-jtag-tools/
http://web.archive.org/web/20140620185105/http:/hackingbtbusinesshub.wordpress.com:80/2011/12/16/the-proprietary-trimedia-jtag-tools/
http://web.archive.org/web/20140620185105/http:/hackingbtbusinesshub.wordpress.com:80/2011/12/16/the-proprietary-trimedia-jtag-tools/
http://web.archive.org/web/20140620185105/http:/hackingbtbusinesshub.wordpress.com:80/2011/12/16/the-proprietary-trimedia-jtag-tools/
http://web.archive.org/web/20140620185105/http:/hackingbtbusinesshub.wordpress.com:80/2011/12/16/the-proprietary-trimedia-jtag-tools/
http://web.archive.org/web/20140620185105/http:/hackingbtbusinesshub.wordpress.com:80/2011/12/16/the-proprietary-trimedia-jtag-tools/
http://web.archive.org/web/20140620185105/http:/hackingbtbusinesshub.wordpress.com:80/2011/12/16/the-proprietary-trimedia-jtag-tools/
http://web.archive.org/web/20140620185105/http:/hackingbtbusinesshub.wordpress.com:80/2011/12/16/the-proprietary-trimedia-jtag-tools/
http://web.archive.org/web/20140620185105/http:/hackingbtbusinesshub.wordpress.com:80/2011/12/16/the-proprietary-trimedia-jtag-tools/

Exploring the hardware - Pinout

~.
\'I

/-..-‘\._

|: P3 :|

__/

."-f-._.-\.

Pz | P4 |

__/

\ ;
"\1___ ____/

e P1:Voltage fluctuation: 0,94 -1, 14 - 2,x - 3,46 (TX?)

e P2:Voltage fluctuation: 2,x - 3,46 (after a few seconds, remains steady at 3,46) (RX?)
* P3/P4: Fixed voltage: 3,29

 P5/P7/P11: Voltage fluctuation: 3,27 - 3,29 - 3,30

* P9: Fixed voltage: 1,79

 P6/P8/P10/P12: GND

Exploring the hardware - Pinout

_i:uss ANOSCILLOSCOPE |

Exploring the hardware - Pinout

* Right tool? An Oscilloscope

» With a scope you can check the basic nature of a signal (VCC,
GND,Pulled-up line, numeric signal) and guess its parameters (max
voltage, frequency, etc).

* Didn’t have any at that time

* It’s possible to build a cheap scope with a BusPirate or a Raspi &
Arduino

e BusPirate: The bandwith and sampling rate aren't good (5720 samples per
second). In practice, gives a maximum measurable frequency at about 1kHz

* https://www.raspberrypi.org/blog/build-oscilloscope-raspberry-pi-arduino/

https://www.raspberrypi.org/blog/build-oscilloscope-raspberry-pi-arduino/
https://www.raspberrypi.org/blog/build-oscilloscope-raspberry-pi-arduino/
https://www.raspberrypi.org/blog/build-oscilloscope-raspberry-pi-arduino/
https://www.raspberrypi.org/blog/build-oscilloscope-raspberry-pi-arduino/
https://www.raspberrypi.org/blog/build-oscilloscope-raspberry-pi-arduino/
https://www.raspberrypi.org/blog/build-oscilloscope-raspberry-pi-arduino/
https://www.raspberrypi.org/blog/build-oscilloscope-raspberry-pi-arduino/
https://www.raspberrypi.org/blog/build-oscilloscope-raspberry-pi-arduino/
https://www.raspberrypi.org/blog/build-oscilloscope-raspberry-pi-arduino/

The Philips TriMedia CPU

Quark

SECURING EVER

Philips TriMedia CPU — History & Features

 Originally manufactured by Philips, currently known as NXP (Nexperia) semi-
conductors

* Were used in automotive, mobile, IoT and networking solutions
e Mostly used for DSP (Digital Signal Processing)

Are VLIW (Very Long Instruction Word) processors
* Can execute multiple operations in parallel
* 5to 8issue slots filled with up to 45 functional units
* 128 32-bit general purpose registers

* In 2000, there were some efforts to create a 64 bit version of the TriMedia CPU
* In 2010, TriMedia group was terminated

* In 2016, Qualcomm wanted to acquired NXP (S47 billion):
https://www.quaIcomm.com/news/releases 2016/10/27/qualcomm-acquire-nxp

* In 2018, Qualcomm walked away of buying NXP:
http.;;]://vlvww.cnbc.com/2018/07/25/quaIcomm-is-preparing-to-give-up—on—
nxp.htm

https://en.wikipedia.org/wiki/TriMedia (mediaprocessor)

https://www.qualcomm.com/news/releases/2016/10/27/qualcomm-acquire-nxp
https://www.qualcomm.com/news/releases/2016/10/27/qualcomm-acquire-nxp
https://www.qualcomm.com/news/releases/2016/10/27/qualcomm-acquire-nxp
https://www.qualcomm.com/news/releases/2016/10/27/qualcomm-acquire-nxp
https://www.qualcomm.com/news/releases/2016/10/27/qualcomm-acquire-nxp
https://www.cnbc.com/2018/07/25/qualcomm-is-preparing-to-give-up-on-nxp.html
https://www.cnbc.com/2018/07/25/qualcomm-is-preparing-to-give-up-on-nxp.html
https://www.cnbc.com/2018/07/25/qualcomm-is-preparing-to-give-up-on-nxp.html
https://www.cnbc.com/2018/07/25/qualcomm-is-preparing-to-give-up-on-nxp.html
https://www.cnbc.com/2018/07/25/qualcomm-is-preparing-to-give-up-on-nxp.html
https://www.cnbc.com/2018/07/25/qualcomm-is-preparing-to-give-up-on-nxp.html
https://www.cnbc.com/2018/07/25/qualcomm-is-preparing-to-give-up-on-nxp.html
https://www.cnbc.com/2018/07/25/qualcomm-is-preparing-to-give-up-on-nxp.html
https://www.cnbc.com/2018/07/25/qualcomm-is-preparing-to-give-up-on-nxp.html
https://www.cnbc.com/2018/07/25/qualcomm-is-preparing-to-give-up-on-nxp.html
https://www.cnbc.com/2018/07/25/qualcomm-is-preparing-to-give-up-on-nxp.html
https://www.cnbc.com/2018/07/25/qualcomm-is-preparing-to-give-up-on-nxp.html
https://www.cnbc.com/2018/07/25/qualcomm-is-preparing-to-give-up-on-nxp.html
https://www.cnbc.com/2018/07/25/qualcomm-is-preparing-to-give-up-on-nxp.html
https://www.cnbc.com/2018/07/25/qualcomm-is-preparing-to-give-up-on-nxp.html
https://en.wikipedia.org/wiki/TriMedia_(mediaprocessor)

The Philips TriMedia CPU- Additional info

. TrSiI(\)/ISedia micro-processors run a RTOS (Real Time Operating System) known as
p

* There have been some efforts to port the 2.6 Linux kernel branch to run on TriMedia CPU
* There’s an official SDK to program TM CPUs (C++ and TM ASM)

* Only available for big companies such as DLink or 2Wire which make specific
development for TM CPUs

* There are some TM compliant SDKs

» Streaming Networks has IADK (Integrated Application Development Kit), specifically designed
for PNX1300 family series

* There are development boards equipped with TriMedia CPUs

* TriREF development board offered by Streaming Networks
e Costs around US $5,000.00

e Other options can be found on Ebay

b
QThe Philips TriMedia CPU - Sources of information

* The “good” and “official” information is private and tools are expensive
 However, there are some datasheets and US patents around the Internet

* http://hackingbtbusinesshub.wordpress.com was a good resource
* Not available anymore, anyway some copies can be found on web.archive.org
* Very nice work reversing 2Write routers based on TriMedia CPUs

* Wrote 2wiglet (based on urjtag) and tm32dis (disassembler)

* IDA has support for TriMedia CPUs since its 4.x version, specifically, its 4.21
version

* Only available upon special request (in fact, is not available anymore)

* | created a repo with all the TriMedia information and tools | could find
during the research

* https://github.com/crackinglandia/trimedia

http://hackingbtbusinesshub.wordpress.com/
https://github.com/crackinglandia/trimedia

The PNX1300EH CPU

e VLIW architecture

e Other VLIW archs are SHARC & the C6000 processors (*) with more than 5
issue slots

* Maximum speed: 143-MHz at 2.5V

* General-purpose 32-bit CPU

e 128 32-bit general purpose registers

* Implements some media standards such as MPEG-1 and MPEG-2
* 5issue slots with 27 functional units

(*) https://en.wikipedia.org/wiki/Very long instruction word

https://en.wikipedia.org/wiki/Very_long_instruction_word

The PNX1300EH CPU - Block diagram

SDRAM 32-bitdata
I'—/ up to 572 MB/sec
| |
PNX1300 | Main Memory Huffman decoder
Interface Slice-at-a-time
MPEG-1 & 2
CCIRE56 dig. video VLD

YUV 422 — Videoln —¥ep o0 0cessor
up to 81 MHz (40 Mpix/sec)

Stereo digital audio . . CCIRE56 digital video
gw%_mmam — Audioln = \Video Out [v jy492 g

1S DC, up to 22 MHz Al_SCK up to 81 MHz (40 Mpix/sec)

2/4/6/8 ch. digital audio .)
16 and 392—bit data ¥— Audio Out - Timers

1S DC, up to 22 MHz AO_SCK

IEC958 Synchronous
upto 40 Mbitsec “®—| SPDIF Qut |“@-en Serial NG ﬁggtbegngnodem or ISDN
Interface
2
ca'm‘grgf‘gt}g’_ <> |2C Interface |=of > DVDD
Down & up scaling
L~ YUV — RGB
32K — -
vLiw | 1§ -
CPU 16K Coprocessor
D$ +
Extermnal bus
PCI-XIO Interface ~PCI2.1 (32 bits, 33-MHz)
| + glueless 24A/8D slaves

- | o

The PNX1300EH CPU - Register model

* 128 32-bit general purposes registers

* FromrOtorl27/

* rO and r1 have fixed values, 0 & 1, respectively. Used as boolean
* The programmer is not allowed to writetorO & rl

* PCis the program counter

* Four special registers:
e PCSW (Program Control and Status Word)
 DPC (Destination Program Counter)
e SPC (Source Program Counter)
 CCOUNT (Counts clock cycles since reset)

The PNX1300EH CPU — Register mode

* The PCSW register is used as a flag register (like EFLAGS in x86/x64)
 The DPC and SPC are registers used for exception processing

 The CCOUNT register, the only 64-bit register in the PNX1300, is used for
cycle counting. It counts clock cycles since the last RESET event.

 The PNX1300 CPU has a switchable bytesex (per unit)

* The switch is done by software by writing the BSX flag (bit size) into the PCSW
register

* This means that little and big endian byte ordering can be found on the same
execution

* |load and store operations observe the BSX flag in the PCSW register in order to know
if the operation should be done in little or big endian order

* If the BSX flag is equal to 1, then little endian byte ordering is used. If the BSX flag is
0, then big endian byte ordering is used

The PNX1300EH CPU — Memory & MMIO

* The PNX1300 defines four apertures in a 32 bit address space:

* The memory hole: mapped from address O to OxFF, thus is 256 bytes size

 DRAM: mapped from DRAM_BASE to the address in the DRAM_LIMIT
registers (max size 64 MB)

« MMIO: starting at MMIO_BASE and is a fixed 2-MB size
* PCI: space not marked as DRAM, MMIO or memory hole

* VValues for DRAM and MMIO are set at boot time by the BIOS

The PNX1300EH CPU — Memory & MMIO

OxFFFF FFFFF

PCI
2 MB
MMIO Aperture
MMIO_BASE
PCI
DRAM_LIMIT| A
1 MB - 64 MB
DRAM Aperture
DRAM_BASE| ¥
PCI

0x0000 0000| §256byte hole

b
Q The TriMedia ASM & Instruction set

* The ASM language used by TriMedia can be described like this:

“The Trimedia processor is a VLIW machine with multiple functional
units, where you can get up to 5 operations in a single instruction
word. The assembler for that is a multi-pass beast that is as close to
magic as l've ever encountered in an assembler.”

b
Q The TriMedia ASM & Instruction s«

Just to give you an example:

instruction @ : 224 bits (28 bytes) long *)

offset : ©OX00000000 *)

bytes : 00 18 4c OCc cO 80 cO 81 c3 80 cO b5 co 81 92 00 12 90 8C 00 20 90 40 40 40 20 a0 do *)
format bytes : 0x0018 & oxffe3 = oxeve0, format in little endian bit order: 00 00 00 00 00 *)

IF r1 uimm(©x61a618) -> ro, (* 42 bits: © 02 30 c@ Oc 4c *)

IF r7 ijmpi(@x90030001), (* 42 bits: 2 40 81 81 c@ 80 *)
IF r2 fadd r67 rl1 -> r32, (* 42 bits: 1 01 92 c@ 80 c3 *)
IF rl@ bitand ré64 r3 -> rie, (* 42 bits: © 81 02 92 81 cO *)
IF rl uimm(©xdeeeee24) -> ro; (* 42 bits: 3 42 00 12)

o
Q The TriMedia ASM & Instruction set

* Operation = Instruction -> each TM instruction has 5 operations

* As many other ASM languages, TM different types of operations:
Mathematical operations (integer and floating point) E.g: iadd, isub, imul, fdiv
Logical E.g: bitand, bitor, bitxor, bitinv

Load/Store E.g: alloc, allocd, ild16, I1d32, st8

Control-flow (branches) E.g: ijmpf, ijmpt, ijmpi

Multimedia & DSP E.g: imax, imin, quadumax, h_dspidualabs

* Sign E.g: sex16, sex8

 All operations can be executed in parallel, up to five

* Each operation has its own functional unit (a predefined slot in the CPU
that dispatches certain group of operations)

* i.e. Mathematical integer operations go to the ‘ALU' unit, control flow operations go
to the 'branch’ unit, immediate operations go to the 'const’ unit, etc

b
Q The TriMedia ASM & Instruction set

e (Almost) All operations can be (optionally) “guarded” (except for iimm
and uimm)

* A guarded operation executes conditionally, depending on the value
in the 'guard’ register

* Any of the 127 registers (except for those that have a special use) can
be used to “guard” an operation

* Example:

IF R23 iadd R14 R10 - R13
* This should be taken to mean

if R23 then R13 < R14 + R10

The PNX1300EH CPU - Addressing modes

* Addressing modes, these can be summarized in the following table:

Mode Suffix Applies to Name
R[i] + scaled(#)) d Load & Store | Displacement
R[] + R[k] r Load only Index
R[i] + scaled(R[k]) X Load only Scaled index

* R[i] indicates one of the general purpose registers

 The'i' and 'k' parameter can have a value between 0 to 127

* The'j' parameter can be between -64 and 63

e Example: ‘[d32d(—8) r3’ loads a 32-bit value from address (r3 — 8)

The TriMedia ASM - Compression scheme

e Sources of information:
* US PATENT 5787302 Software for producing VLIW instruction compression
* TM32 disassembler tool: https://sourceforge.net/projects/tm32dis/

* Reminder:
 |nstruction != Operation
* We can have up to 5 operations in one instruction
e Each operation can belong to any of the 27 different functional units
* Each operation can be dispatched in any of the 5 issue slots

https://sourceforge.net/projects/tm32dis/

The TriMedia ASM - Compression scheme

 General considerations:

* The length of each instruction will vary depending on the size of each
operation

Operations size can be 26, 34 or 42 bits

Operations can be guarded or unguarded

Operations can be zeroary, unary or binary (0, 1 or 2 operands)
Operations can be resultless

Operations can contain immediate parameters (7 or 32 bits)
Operations are all compressed except for the branch op

The TriMedia ASM - Compression scheme

* Format bits:
* 2 bits that accompany an operation

* Provide additional information about the operation (listed in the previous
slide)

* Are located in the prior instruction

* 5 operations per instruction: that means that we have a 10 format
bits in total (2 for each of the 5 operation), thus, one byte plus 2 bits
are used

* In general: 2*N format bits for a N-issue slot machine
* Bits are organized in N groups of 2 bits

The TriMedia ASM - Compression scheme

* Format bits are referred in matrix notation as Format|[j] where j is the bit number

e Bits Format[2i] and Format[2i+1] give format information about issue slot i,
where 0<=i<=N

Format (2i) Format (2i+1)
(Isb) (msb) Meaning

0 0 Issue slot i is used and an operation for it is available in the instruction. The operation size is 26 bits. The size
of the extension is 0 bytes

1 0 Issue slot i is used and an operation for it is available in the instruction. The operation size is 34 bits. The size
of the extension is 1 byte

0 1 Issue slot it is used and an operation for it is available in the instruction. The operation size is 42 bits. The
size of the extension is 2 bytes

1 1 Issue slot is unused and no operation for it is included in the instruction

* Forexample, if Format={1,1,1,1,1,0, 1, O, 1, 0}, then the instruction contains
three 34 bits operations ({1,0}, {1,0}, {1,0}).

The TriMedia ASM - Compression scheme

* Operations can have 26, 34 and 42 bits
e 26-bit operations are broken up into a 2-bit part to be stored with the format
bits and a 24-bit part
* 34-bit operations are broken up into a 2-bit part, 24-bit part and one byte
extension
* 42-bit operations are broken up into a 2-bit part, a 24-bit part and two byte
extensions

* Extension bytes are used to extend the size of the operation from the
basic 26 bit to 34 or 42 bit, if needed

The TriMedia ASM - Compression scheme

FORMAT 2 | OPERATIONS 1 INSTRUCTION 1 - BRANCH TARGET, UNCOMPRESSED
FORMAT 3 k OPERATIONS 2 INSTRUCTICN 2 - COMPRESSED
FORMAT 4AK OPERATIONS 3 INSTRUCTION 3 - COMPRESSED
FORMAT X \i OPERATIONS 4 INSTRUCTICON 4 - COMPRESSED

The TriMedia ASM - Compression scheme

figld name | format {X1X[X
fieldsize |10 [212)2

1424

field name | format X}(? operation 1
fieldsize | 10 (222 24

e A 1424 34 4t s

{ field name | format [X

g q operation 1 operation 2
fieldsize | 10 2122 24 24
e 4 14 24 3444 54647404
field name | format (010101 operation 1 operationz operation 3
fieldsize | 10 g%% 24 24 24

e 4142 434445447 454941004114

3 issue slots used

The TriMedia ASM - Compression scheme

format gg? operation 1 operation 2 operation 3 X_X"X'E'
10 121212 24 24 24 9
b1 4 2434445404 7434 94104114 124
operation 4 Exlegsinn Ef
24
134 144 154 64174184
format gg{% aperation 1 operation 2 operation 3 xxgg
10 12122 24 24 2 21212
A 1A odshsdshohrbgdabindindnd
operation 4 operation 5 E1xt Eéd Fxt
24 24 :

L4 134 u4d 54 64174184 194 04 04 24 34

The TriMedia ASM — Disassembling

e Execution flow is divided into "Decision Trees" (dtree)
e Each Decision Tree has a given number of instructions

* Decision Tree is the scheduling unit or building block for a TriMedia VLIW
core, it can be seen as a function in a high-level language

* The beginning of a dtree is indicated with the format bytes OxAA02
* These bytes are used to encode a branch target instruction

* Four basic steps:
e Get instruction length
* Get operation size
* Unpack operation
* Decode operation

The TriMedia ASM — Disassembling

Disassembling a TM instruction:

e Get instruction length

e Sum of sizes of operations (subtract format bits). If len(ins) > 3, add 8 bits for
formats field of second group

* Get operation size
* Given by formats bits

e Unpack operation
* Black Magic!

* Decode operation
* More Black Magic!

The TriMedia ASM — Disassembling

* Now, remember the 1 MB of data at the beginning of the firmware
image?

e dd if=dcs5300 firmware 105.bin of=almost_first_ mb.bin bs=1
count=978627

* tm32dis.exe -i almost_first_mb.bin > output.txt

The TriMedia ASM — Disassemb

instruction © : 224 bits (28 bytes) long *)

offset : ©Ox00000000 *)

bytes : 00 18 4c Oc cO 80 cO 81 c3 80 cO b5 co 81 02 00 12 00 8c 90 20 90 40 40 40 20 a0 do *)
format bytes : 0x0018 & Oxffo3 = 0x0000, format in little endian bit order: 00 00 00 00 00 *)

IF r1 uimm(©x612618) -> ro, (* 42 bits: @ 02 30 c@ Oc 4c

IF r7 ijmpi(@x90030001), (* 42 bits: 2 40 81 81 co 80 *)

IE r2 fadd r67 p1 -> r32; (* 42 bits: 1 01 92 co 80 c3 *)

IF bitand r64 r3 -> rie, (* 42 bits: © 81 02 02 81 cO *)

IF rl uimm(©xdee60024) -> re; (* 42 bits: 3 42 83 00 12 00 *)

instruction 1 : 144 bits (18 bytes) long *)

offset : @x0000001c *)

bytes : €0 60 41 40 02 cO c5 65 do 41 18 08 10 80 42 5f 20 60 *)

format bytes : Oxe060 & Oxffo3 = @xev00, format in little endian bit order: 00 00 01 11 @0 *)

IF r1 uldsd(e) rés -> r9, (* 26 bits: 1 02 40 41 *)
IF r1 asl ré64 rll -> r23, (% 26 bits: 2 65 ¢5 cO *)
IF r1 igtri(3) r8e -> r97, (* 26 bits: © 18 41 do *)
IF rl ilesi(®) ri16 -> rile, (* 26 bits: © 42 80 10 *)
26: ILLEGAL OP! = ineqi; (* 26 bits: @ 60 20 5f *)

instruction 2 : 136 bits (17 bytes) long *)

offset : ©0x0000002e *)

bytes : 00 20 60 22 26 3c a@ a4 cO cO 80 82 c@ 89 a8 a5 24 *)

format bytes : 0x0020 & oxffo3 = 0x0000, format in little endian bit order: 00 00 00 00 00 *)
IF r1 1igeqi(-60) r96 -> r24, (* 26 bits: @ 26 22 60 *)

IF rl18 ifixrz r6o@ -> reé4, (* 26 bits: 2 a4 a@ 3c *)

IF rl uimm(©x24292001) -> r3, (* 42 bits: © 92 94 80 cO co *)

IF rl1 nop, (* © bits: *)

e ifixrz re4 -> ri9; (* 26 bits: 2 a8 89 co *)

The TriMedia ASM — Disassembling

IMEMegenEratornet

* A plugin for IDA to disassemble and navigate TM code would be great
(work in progress project)

* More docs

* More affordable and open tools for amateurs (development boards,
SDK, hardware debuggers)

* Reminds me of Halvar Flake’s “Closed, heterogenous platforms and the
(defensive) reverse engineers dilemma” talk (*)

(*) https://www.sstic.org/2018/presentation/2018 ouverture/

https://www.sstic.org/2018/presentation/2018_ouverture/

Conclusio

* Now, really ...

* | was a little bit stressed but reversing a
TriMedia based device was a real
challenge

e Given by a lack of tools and docs

* Also because of the complexity of the
architecture itself

* Learnt lots of new things

* I’ll probably end up looking for more
devices with TriMedia CPUs ©

: _ o1
‘ 1
. .
R .« e el

