
Breaking Azure AD joined endpoints in
zero-trust environments

Dirk-jan Mollema / @_dirkjan

- Dirk-jan Mollema

- Lives in The Netherlands

- Hacker / Researcher / Founder @ Outsider Security

- Author of several (Azure) Active Directory tools
- mitm6
- ldapdomaindump
- BloodHound.py
- aclpwn.py
- Co-author of ntlmrelayx
- ROADtools

- Blogs on dirkjanm.io

- Tweets stuff on @_dirkjan

whoami

• Azure AD and zero trust

• How device join works

• Primary Refresh Tokens, TPM and their protection

• Stealing PRTs and the Microsoft response

• Abusing device join scenario’s

• Bonus: bypassing MFA as Intune admin

Talk outline

• Azure AD
• Identity platform for Office 365, Azure Resource Manager, and other Azure

things

• Also identity platform for any first/third party app you want to integrate with
it

• This is not about Azure infrastructure/VMs/etc

Terminology

Zero trust

Source: https://www.microsoft.com/en-ww/security/business/zero-trust

• Devices registered / joined to Azure AD

• Mobile (Android/iOS) or Windows 10 based (laptop/desktop)

• Device exists as an object in Azure AD

• Can be managed by Intune (or third-party MDM)

Device identity

Device join options

• Azure AD joined
• For corporate owned devices
• Azure AD is the primary authority
• Windows 10 only

• Azure AD registered
• For BYOD devices
• Supports both mobile (Android/iOS/Win Mobile) and desktop (Windows 10/MacOS)

• Hybrid join
• Joined to both on-prem AD and Azure AD
• Managed by on-prem AD (GPO’s)

Device join and compliancy

• Device joined to Azure AD

• Managed by MDM (Intune)

• Applies policies to devices

• Applied policies make devices compliant

• Conditional Access used to restrict access to resources to compliant
devices

Locking down trusted devices

• Restrict Intune enrollment to only corporate devices
• Block BYOD devices

Research scenario

• Windows 10 devices

• Autopilot in use

• Personal devices restricted in Intune

• Device compliancy required in Conditional Access

• Hardware protection

Research questions

• How are devices joined to Azure AD?

• How are secrets protected by hardware?

• Can we extract the secrets or bypass the need for them?

• Can we bypass the compliant device requirement?

Device join flow – Windows 10

Device join flow after setup

• Regular sign-in (with MFA prompt if that is enforced)

• Requests token for device registration service

• Final confirmation prompt

Flow in the background

• Two keypairs are generated
• Device key

• Transport key

• Public key is sent to Azure AD

• Private key remains on device

Technical flow

Registration request

Access token for device reg service

Certificate Sign Request for device cert

Public RSA key for transport

Device properties

0 = AAD join

Device Ticket (can be left out)

• Azure AD issues a certificate

• Device object is created in Azure AD

Technical flow(2)

• Separate (crypto)processor

• Either as physical chip or integrated in CPU (can be virtual)

• Secure storage area

• Required for Windows 11

Trusted Platform Module

Private keys are stored in TPM
TPM

• A TPM protects against:
• Key extraction from a powered down stolen device (if protected by PIN)

• Extracting private material from the OS layer

• A TPM does not protect against:
• Sniffing the physical connection between the TPM and CPU

• Using cryptographic material in the TPM while the system is running, from a
process with SYSTEM rights

A few notes about TPMs

• User signs in using username + password

• Primary Refresh Token is issued

After device registration

• Challenge is requested from online service

Primary Refresh Token flow (1)

• Nonce is returned

PRT flow (2)

• Signed data is sent to the server

PRT flow (3)

Signed data content

PRT flow (4)

Incorrect, actually 90 days

PRT

Encrypted session key with transport key

• Device cert private key, transport key and session key are stored in
TPM

• Possible to use from the OS, but not possible to extract from TPM
(even as SYSTEM)

• Used for Single Sign On to Azure resources

To summarize – sign-up flow with TPM

Interacting with Primary refresh
tokens

• Any app in the user session can request Single Sign On (SSO) data

• Via RPC or helper applications (emulating Chrome)

• References:
• RPC Approach (by Lee Christensen): https://posts.specterops.io/requesting-

azure-ad-request-tokens-on-azure-ad-joined-machines-for-browser-sso-
2b0409caad30

• Pretend-to-be-Chrome Approach with ROADtoken:
https://dirkjanm.io/abusing-azure-ad-sso-with-the-primary-refresh-token/

Primary Refresh Token SSO

• Initialize flow on attacker host

• Request SSO token on victim host

ROADtoken

• Use PRT cookie to authenticate, get token

• Token claims:

PRT Authentication

• More research in combination with Benjamin Delpy (@gentilkiwi)

• Built a combination of Mimikatz and ROADtools to obtain and use the
PRT

Stealing PRTs as admin

Mimikatz magic

PRT cookie structure (JWT)

1. Random bytes called a “context” is generated

2. Using this context, a key is derived from the session key

3. This “derived key” is used to sign the PRT cookie

4. The PRT cookie (JWT) is used in Azure AD to sign in

PRT cookie signing flow – software only
Random bytes

(context)

PRT

Session key Derived key

PRT cookie
(JWT)

Nonce from
Azure AD

PRT cookie signing flow – with TPM

Random bytes
(context)

PRT

Session key

Derived key

PRT cookie
(JWT)

Nonce from
Azure AD

TPM

LSASS process

Mimikatz magic with TPM

Use derived key and context to recreate PRT
cookie

• If you’re admin on a device with a PRT, you can steal the PRT if it’s not
in TPM

• If it is in the TPM you can still acquire context/derived key
combinations which allow you to use the PRT without the device

• Longer version:
https://dirkjanm.io/digging-further-into-the-primary-refresh-token/

PRT as admin TL;DR

Microsoft’s response

• In the August 2021 Windows updates, patches were introduced which
changed this behavior.

• Also changed storage mechanism in LSASS, breaking Mimikatz
CloudAP functionality.

• Data is still in LSASS, simply in different format, could be added to
future versions of mimikatz or derivatives.

Updated PRT cookie structure (JWT)

New PRT signing process

KDF context is now 32 bytes

SHA256 hash of random context + JWT body

Changes

• Previously a random context was used to derive a signing key

• Now the SHA256 hash of random context + JWT body is used

• I could also have read the documentation instead of reverse
engineering LSASS ☺

Ref: https://docs.microsoft.com/en-us/openspecs/windows_protocols/ms-oapxbc/89dfb8d6-23b8-4963-8908-91b34340e367

PRT cookie signing flow – with TPM

Random bytes
(context)

PRT

Session key

Derived key

PRT cookie
(JWT)

Nonce from
Azure AD

TPM

LSASS process

JWT body

SHA256 hash

KDF context

Fix details

• Patched as CVE-2021-33781

• New method prevents pre-generation of context/derived key
combinations that could be used later, since the nonce is part of the
KDF function.

• Downgrade from kdf_ver2 prevented by storing the KDF version in the
PRT itself (assumed) at the moment it is first issued.

Abusing device join scenarios

• Need to be admin on the device

• Need to dump LSASS

• No longer possible when secrets are stored in TPM

• Device disabled = PRT disabled

PRT stealing attack downsides

• We know how to get our own Primary Refresh Token by registering a
device.

• We know how to get an access token from a user session by using
SSO.

• How about registering a new device with an SSO token?

Combining knowledge

• Initialize SSO flow

• Request token with PRT cookie

Registering with SSO

Register device

Credits: Adapted from AADInternals by @DrAzureAd

Obtain PRT using user password

Use PRT and session key to sign in

Sign in with PRT

• SSO token can be requested by limited user

• Access token contains MFA claim

• New device registered will also issue PRT with inherited MFA claim

• Only password (or SSO in case of AD FS) is required to get a PRT

• Free MFA upgrade!

New device registration attack summary

• Upside
• Is separate from the old device, so if old device is disabled our PRT will still

work.

• Downside
• Requires permissions to register devices (not always allowed)

• Does not mean the device will be allowed to enroll into Intune (for
compliancy)

New device upsides/downsides

Bypassing Intune restrictions

Device registration vs Intune registration

• Device registration process registers device in Azure AD

• Separate process to register device with Intune

• Restrictions on non-corporate devices in Intune still allow you to
register devices in Azure AD (this is controlled separately)
• If registration done from non-corporate device, it will actually get an error

from Intune and then delete the device from Azure AD.

• An Azure AD registered device will not gain you anything since Conditional
Access is set for compliant devices, not joined devices.

Azure AD registration observations

• Device with Autopilot pre-registration can register in Intune

• When the device is wiped and re-installed, the new device will
overwrite the old device object in Azure AD

• How does Azure AD know it is the same device?

Registration request

Access token for device reg service

Certificate Sign Request for device cert

Public RSA key for transport

Device properties

0 = AAD join

Device Ticket (can be left out)

Observations part 2

• Re-using the same “MSA-DDID” parameter between registrations will
overwrite the device.

• Seems to expire after a certain period of time.

• What is the MSA-DDID parameter?

Reversing the registration flow

• Registration flow itself is a web-based app

• Calls WinRT APIs (COM )

• Eventually spawns dllhost.exe with dsreg.dll for actual registration
logic.

Reversing the registration process

Device tickets

Device tickets

• Your device has it’s own Microsoft Account (MSA).

• Used when device specific authentication is needed.

• Tickets are cached in the HKCU (!) registry hive:
• HKCU\SOFTWARE\Microsoft\IdentityCRL\Immersive\production\Token\{GUID}

• Tickets are DPAPI encrypted, but with machine specific protection,
meaning any user on the machine can decrypt them.

Ticket enumeration POC

Requesting tickets

• Further reversing leads us to the exact WinRT API calls needed.

• App GUID for the registration:
• 98D5C072-656C-4720-AC21-B85E2ACBBE88

• Registration endpoint ID:
• service::enterpriseregistration.windows.net::MBI_SSL

Putting together a ticket request script

Obtaining a device ticket

Overwriting the current device

Device retains original properties

Attack summary

• Any user with a session on the device can request a device ticket,
which could be used to overwrite the device in Azure AD if it was
preregistered using Autopilot

• Overwrites the device in Azure AD and gives us a cert+private key that
is no longer in TPM.

• No need to “steal” a PRT from TPM.

• No need for Administrative privileges at all.

Some bonus features

• Any user in the tenant can overwrite the device using the device
ticket.

• Device ticket stays valid after device wipe (for about 24 hours).

• The identity used to overwrite the device becomes the new device
owner, which means it can recover the BitLocker drive encryption
keys if these are stored in Azure AD (privesc to Administrator if user
has physical access).

• The original device keeps its link to Intune, and will keep reporting its
compliancy.

• Device retains its compliancy status.

Complete chain

• A few commands in a non-administrator session of the victim were
enough to:
• Request an SSO token to register a new device.
• Request a device ticket to overwrite the legitimate, compliant device.
• Gain access to:

• Persistent Primary Refresh Token for the victim user.
• Including MFA claim transferred from the SSO token.
• Compliant device claim from Intune to satisfy strict Conditional Access policies.

• Bypassing:
• MFA
• Hardware security of secrets (TPM)
• The need to dump LSASS or have Administrator privileges.

• Chrome users browsercore.exe as native component for SSO

• Replace with browsercore.py which contains PRT data

Using the rogue PRT

Using the rogue PRT

• Registering a device via SSO was reported to MSRC in December 2020

• Final fixes rolled out in September 2021

• Intermediate fixes also for specific platforms

• No longer possible to use SSO tokens for device registration

• Device overwriting via device ticket was reported in May 2021.

• Patched in May 2022 via Windows update and assigned CVE-2022-
30189

Disclosure timeline

• Registration flow:
• User A registers device using MFA

• User A is set as owner of the device in Azure AD

• Once user A logs in for first time, MFA claim is transferred because it was used
during registration and user A is the owner.

• MFA claim is “copied” to the PRT, so tokens issued via the PRT also comply
with MFA requirements.

Bonus: MFA bypass as Intune / Global admin

• MFA claim is transferred based on ownership

• As Intune admin or global admin, add extra owner to device

• Log in on fake device with only password, PRT is issued with MFA
claim without ever entering MFA for that user.

Flaw

• Reported May 2021

• After some discussion with MSRC, accepted as vulnerability in July
2021

• Fixed August 2021

• MFA claim is now no longer transferred to PRT after registration

Bonus: MFA bypass as Intune / Global admin

• Secrets in hardware were not efficiently protected.

• Possible to obtain a PRT by simply registering a new device.

• Low privilege user on the device could take over the device identity.

• Intune admins could bypass MFA of arbitrary users.

• All should be now fixed if you patched your endpoints ☺

Conclusion

All tools in the talk are based on the ROADtools framework/library

Open source at https://github.com/dirkjanm/ROADtools/

I have ROADtools stickers, come get some after the talk ☺

Breaking Azure AD joined endpoints in
zero-trust environments

Questions? Twitter: @_dirkjan / Mail: dirkjan@outsidersecurity.nl

