
EMBA

Firmware
security
analyzer

@securefirmware
https://github.com/e-m-b-a

Michael Messner, Pascal Eckmann

whoami

Michael Messner

Penetration tester
Firmware analysis
Hardware analysis
Siemens Energy AG

@s3cur1ty_de
https://github.com/m-1-k-3

@ michael.messner@siemens-energy.com

whoami

Pascal Eckmann

Cybersecurity Engineer
Security Research
Siemens AG

@_p4cx
https://github.com/p4cx

@ pascal.eckmann@siemens.com

The landscape

What the firmware analysis

• Firmware is the operating system

• Linux analysis techniques can be used quite often and are well known

• Commercial tools are available, but they are expensive and limited

• EMBA has no limits, costs no money and gives the best results

The typical workflow

• Do some strings

• Do some binwalk

• Do some find

• Do some regex

• Do a lot google

• Load something into IDA/Ghidra

• Do something

EMBA to the rescue

Get the firmware (vendor, hardware)

Extract the firmware (e.g., Linux filesystem, Kernel)

Analyze the firmware

Report all the things

Firmware
binary file

EMBA
extractor
modules

EMBA
analyzer
modules

EMBA live
tester

modules

EMBA final
aggregator

W
eb

 r
ep

o
rt

 g
en

e
ra

to
r

Access the
firmware

Get the firmware

• Updates from vendor / web site

• Shell access – copy the filesystem via scp, ftp, tftp, nc or to storage device

• Other vulnerabilities e.g., command injection

• JTAG / SWD

• Communication sniffing (e.g., SPI)

• Desolder Flash memory and extract the content

The easiest way

Binwalk all the things

The EMBA extraction process

EMBA
extraction
modules

Identify Linux
root

filesystem

Ext/UFS
filesystems

VMWare
images

Encrypted
images

Special
images

Other
systems

Mount &
copy

Mount &
copy

Decrypt
(leaked keys)

Custom
tool

Binwalk

EMBA
analyzer

Deep
extraction

Ext/UFS filesystems

VMWare images

Encrypted images

Special images

Other systems

Mount & copy

Mount & copy

Decrypt (leaked keys)

Custom
tool (e.g. Freetz NG)

Binwalk

Identify Linux
root

filesystem

OK

Not OK

Always

Basic
compression

Extract
(patool)

Finally, we have something extracted

Which files and directories are there?

Which binaries, configuration files, …

Which architecture are we dealing with?

Which binary protections are in use?

Which Software versions in use?

Is some outdated software in use?

Which areas are from the vendor, which are open source?

Where are possible weak spots or interesting functions used?

Which kernel?

Are there hard-coded passwords?

Scripting issues (shell, python, php, …)?

Insecure permissions?

Weak configurations?

Public exploits?

Dynamic analysis?

Reporting

EMBA
analyzer
modules

Don’t reinvent the wheel

Multiple Linux tools

binwalk

Freetz-NG

Checksec.sh

CVE and CVSS databases

CVE-Search

CVE-Searchsploit

cwe-checker

GHIDRA

Docker

Radare2

fdtdump

linux-exploit-suggester

OpenSSL

uboot mkimage

objdump

pixd

bandit

progpilot

Qemu

shellcheck

sshdcc

tree

unzip

sudo parser

sshdc

Yara

and others …

See also: https://github.com/e-m-b-a/emba/wiki/Installation#dependencies

Hunting 0days

Identify interesting spots

What the 0day?

• 0day – unknown vulnerability (There is no patch available)
• You have to find the vulnerability by yourself
• The goal of every penetration tester is to find 0days

• 1day – already known vulnerability (Patches are in theory available)
• You have to identify the components with exact version details (SBOM) and

match it against a vulnerability database
• The goal of every penetration tester is to do this automagically and do not

waste time with it
• It is also an interesting thing for developers, security teams and the

purchasing department

Weak binary functions

When using legacy C functions such as strcpy, it’s up

to the developer to make sure the size of the buffer

to be written to is large enough to avoid buffer

overruns. If this is not done properly, it can result in

a buffer overflow, causing the program to crash at a

minimum. At worst, a carefully crafted overflow can

cause malicious code to be executed.

Source: https://rules.sonarsource.com/c/RSPEC-1081

Identify interesting spots
Create disassembly

objdump radare2

Check binary protection mechanisms

Weak fct counter

Check network functionality

Common Linux file

Identify interesting spots

See also: https://flattsecurity.medium.com/finding-bugs-to-trigger-unauthenticated-command-injection-in-a-netgear-router-psv-2022-0044-2b394fb9edc by @stereotype32

https://flattsecurity.medium.com/finding-bugs-to-trigger-unauthenticated-command-injection-in-a-netgear-router-psv-2022-0044-2b394fb9edc

The 1day issue

What the 1day?

• 0day – unknown vulnerability (There is no patch available)
• You have to find the vulnerability by yourself

• The goal of every penetration tester is to find 0days

• 1day – already known vulnerability (Patches are in theory available)
• You have to identify the components with exact version details (SBOM) and

match it against a vulnerability database

• The goal of every penetration tester is to do this automagically and do not
waste time with it

What’s the problem?!?

• We are working on the compiled/packed firmware

• Mostly no source code with component versions available

• No standardised format of version details

• No standardised mechanism/parameter on how to get version details

Hybrid version detection in EMBA

Static analysis Dynamic analysis

EMBA database with version identifiers

Output generation with Qemu
Output generation with string
analysis, kernel modules, path

details

Version detection in EMBA

Match the output against a version dictionary:

We love exploits

Version detection in EMBA

@ pascal.eckmann@siemens.com @ michael.messner@siemens-energy.com

EMBA

Firmware
security
analyzer

@securefirmware
https://github.com/e-m-b-a

Michael Messner, Pascal Eckmann

