
macOS Vulnerabilities Hiding in
Plain Sight

Csaba Fitzl
Twitter: @theevilbit

whoami

• lead content developer of "macOS Control Bypasses" @
Offensive Security

• macOS bug hunter

• ex red/blue teamer

• husband, father

• hiking, trail running 🥾 🏔 🏃

Agenda
• Intro

• CVE-2021-1815 - macOS local privilege escalation via Preferences

• CVE-2021-30972 - TCC bypass

• CVE-2022-32780 - Sandbox escape via disk arbitration

• for each CVE:

• technical background

• original vulnerability and exploit

• new vulnerability and exploit

INTRO

• "can't see the forest for the trees"

• we are so focused on something, that we can easily miss some details

• rush in reading stuff online

INTRO

• I tend to read the same articles again and again

• I found three vulnerabilities in published writeups

• not for the first read, but probably 10th, 20th or even 30th

CVE-2021-1815 - macOS local
privilege escalation via Preferences

cfprefsd

• core foundation preferences daemon

• sets/stores and retrieves preferences for apps

• 2 instances: user, system

• interact: Preferences API or direct XPC ()

original vulnerability

• pwn2own 2020 - 6 step exploit chain to
pwn macOS (Yonghwi Jin, Jungwon Lim,
Insu Yun, and Taesoo Kim)

• LPE via cfprefsd

• allowed change ownership of arbitrary
folder

original exploit

• race with symlink

• change ownership of /etc/pam.d

• update sudo pam config

• get root without password

Apple's fix

• reversed by the pwn2own team

• ensures symlinks are no longer
followed (O_NOFOLLOW)

the issue

• although the symlink issue is solved

• a directory is still created

• and ownership set

• ==> we can create a directory
anywhere and set the user as the
owner

exploit method #1
• periodic scripts: executed daily/weekly/

monthly

• config: /etc/defaults/periodic.conf

• the "local" directory is empty by default

• won't work beyond 11.5 (see: https://
theevilbit.github.io/beyond/
beyond_0019/)

• slow :(getting root can take up to a day

demo

exploit method #2
• sysdiagnose runs as root

• it executes binaries from /usr/local/bin
(doesn't exists by default)

• some of these have been remediated
because of homebrew

• not perfect - depends on user trigger:

• Feedback Assistant

• manually invoke

• keyboard shortcut: Command + Option
+ Shift+ Control + Period (.)

CVE-2021-30972 - TCC
bypass

TCC
• security feature to control access to

privacy related resources

• sqlite3 database (except: private
entitlements, macl extended
attribute) - (~)/Library/Application
Support/com.apple.TCC/TCC.db

• for more: talk (20+ Ways to Bypass
Your macOS Privacy Mechanisms),
posts by Wojciech Regula and myself

CVE-2021-30713 - TCC bypass by XCSSET
Source: JAMF

• XCSSET malware TCC bypass 0day

• discovered by JAMF

• malicious app is hosted inside a
bundle, which has TCC
permissions

• macOS wrongly identifies the
bundle (hint!!!)

CVE-2021-30798 - TCC Bypass Again, Inspired By
XCSSET

• found by Mickey Jin

• TCC db contains only bundle
ID

• simply fake the bundle ID in
the app

• system performs code sign
check on the real bundle
(hint!!!)

problem?
• the TCC.db does store the csreq info

• none of the fake processes had proper code signature

• the bypass in both cases was possible because: binaries on disk were verified

• WUT????

• on macOS: you can modify app binaries on disk even when they run (unlike
in Windows)

elsewhere?
• in every other case*, code signature is verified in memory

• *except GateKeeper/amfid when the app is launched, because there is no
process yet

• XPC / Mach connections
• should use audit token

• even PID is insecure

• on-disk? not even an option 🤣

• in-memory integrity check by AMFI

CVE-2021-30972 - TCC bypass again
1. Make a fake app with the same bundle ID
and name as the one we want to
impersonate, and place it in an arbitrary
location

2. Start the app

3. Copy the original app over the fake app

4. Initiate an action which requires privacy
permissions

5. TCC is bypassed, with inheriting the original
app's rights

CVE-2021-30972 - Wojciech's version

1. Make a fake app, and embed in a "donor" app (use the same team ID)

2. Start the app

3. Copy the donor app over the embedded app

4. Initiate an action which requires privacy permissions

5. TCC is bypassed, with inheriting the donor's rights

demo

fix
• finally dynamic code signature is verified

CVE-2022-32780 - Sandbox
escape via Disk Arbitration

diskarbitration - the basics
• system wide service, defined in:

• /System/Library/LaunchDaemons/com.apple.diskarbitrationd.plist

• XPC: com.apple.DiskArbitration.diskarbitrationd

• manage disk mounting, unmounting

• calls mount/unmount system calls under the hood

diskarbitration - why we like it?
• runs as root

• unsandboxed

• XPC service accessible from
application sandbox

• opensource

CVE-2017-2533 - LPE via diskarbitrationd
• used by phoenhex team in pwn2own 2017

• DA:
• resolves path -> checks if the user has rights to

mount over directory

• no more checks later

• resolves path -> mounting

• TOCTOU bug, race condition

• exploit: mount the EFI (admin writeable) partition
over crontabs

CVE-2022-32780

• not exactly hidden

• Apple moved the check into
DAServer.c -
"_DAServerSessionQueueRequest"

• extra check for the sandbox

CVE-2022-32780 - old vs new

CVE-2022-32780 - Testing

CVE-2022-32780 - Testing

CVE-2022-32780 - exploitation
• what to mount?

• EFI won't work (can't mount + not
reachable from sandbox)

• custom dmg!

• how? DA works on /dev,
diskmanagementd (can map dmg into /
dev/) is not reachable from sandbox

• 💡use "open"

• we can unmount, /dev/ remains

CVE-2022-32780 - exploitation
• where to mount?

• Terminal Preferences

• ~/Library/Preferences/
com.apple.Terminal.plist

• "CommandString" executed upon
launch

CVE-2022-32780 - full exploit
1. Drops a `dmg` file

2. It will call `open` to open a `dmg` file

3. Then it will use the diskarbitration service to unmount it --> at this point we have a custom disk device we
can mount somewhere

4. It will start a thread to alternate the symlink and the directory

5. Then it will start a loop to call the mount operation of the DA service - due to the racer it will eventually
succeed

• we also always unmount the local directory, as we don't need that

6. It will check if we mounted over `Preferences`, and if yes stop

7. Open Terminal

demo

conclusion

conclusion

• it's worth to read write-ups carefully

• it's worth revisiting old docs, notes, code

• it's worth to slow down

Csaba Fitzl
Twitter: @theevilbit

Icons

• flaticon.com
• xnimrodx

• Freepik

