) TROOPERS

Attack on Titan M

Vulnerability Research
on a Modern Security Chip

Damiano Melotti
Maxime Rossi Bellom

Quarkslab

Security chip made by Google,
for Pixel devices

Implements critical security features
o Keymaster/Strongbox, Weaver, AVB, etc

Client-server model

Introduced for:

o Mitigate side-channel attacks

o Protect against hardware tampering

Our previous work in 4 slides

Specification

Titan M
Hardened SoC based on ARM Cortex-M3 o TERARRY <
e Anti-tampering defenses
e Cryptographic accelerators & oy T
True Random Number Generator
e UART for logs and console .ss;:/-.m g = D
e SPIlto communicate with Android [e BE o |
-
sefenses

Firmware Security Measures

e Secure boot (images are signed and verified at boot)

e No MMU, but MPU to give permissions to the memory partitions

e Only software protection: hardcoded stack canary checked in the SVC handler
MY NAME IS

if (*CURRENT_TASK->stack != 0xdeaddeed) {
next = (int)&CURRENT_TASK[-0x411].MPU_RASR_value >> 6;
log("\n\nStack overflow in %s task!\n", (&TASK_NAMES)[next]);
software_panic(0xdead6661,next);

¥

What can we do with the exploit?

ic_struct

Vulnerable buffer placed just before 0x78

e runtime data of the chip...

e .. and the list of command handler pointers

| Nugget runtime info |

= overwrite command handler addresses

|AVB GetState|
[AVB Load|
|AVB Store|

to gain code execution!

39

What we already did

Firmware Interact First code
with the Find vulns .
reverse chip execution

What we already did

Firmware Interact First code
with the Find vulns .
reverse chip execution

What we already did

Firmware Interact First code
with the Find vulns .
reverse chip execution

What we already did

Implemented some tools to interact with the chip

Sniff and send custom commands
e From Android using Frida
and our tool nosclient
e On this hardware level thanks to

@doegox’s magic hands

What we already did

Several vulnerabilities reported, including a downgrade issue

Firmware Interact First code
with the Find vulns .
reverse chip execution

Published the first code execution on this target

What we already did

Several vulnerabilities reported, including a downgrade issue

Firmware Interact First code
with the Find vulns .
reverse chip execution

o CVE-2021-0939: A memory leak allowing to reveal parts of the Boot ROM
e CVE-2021-1043: A downgrade issue allowing to flash any firmware

— With a side effect: all the secrets are erased

What we already did

Leak various hidden parts of the firmware

Firmware Interact First code
with the Find vulns :
reverse chip execution

Including the Boot ROM

10

TL;DR: what we learned

e Security chip based on ARM Cortex-M3

e Closed source but based on EC

o An open source OS made by Google
o Written in C and conceptually simple
o No dynamic allocation

e Most of the code is divided into tasks
e SPIl bus used to communicate with Android
e UART bus used for logs and minimalistic console

1

idle
hook

nugget
AVB
faceauth
identity
keymaster

weaver

console

= system events, timers

= system control task

= secure boot management

-+ biometric data

= identity documents support

=+ key generation and cryptographic operations

> storage of secret tokens

=+ debug terminal and logs

12

Communication with the chip

Protobuf
mV} HALS
stadeld
/ daemon
Titan M i 18P o per
I0CTL

lecccccccccceccsss========s==e==--

13

Firmware security

e No dynamic allocation » no UaF and similar
e Secure boot (images are signed and verified at boot)

e MPU to give permissions to the memory partitions
o Custom interface to set the eXecute permission
o No WX permissions by default

e Only software protection: hardcoded stack canary

14

What we show today

e Fuzzing is useful also against Titan M
o Even on such contrainted target, we can get interesting results

e T[wo approaches
o Black-box fuzzer vs emulation-based fuzzer

e Exploiting without debuggers or stack traces

e How a single software vulnerability can lead to
o Code execution
o Compromise of the security properties guaranteed by the chip

15

Blackbox fuzzing

Black Box fuzzing

e TJarget: tasks

e Arbitrary messages with nosclient

o Known format of the messages
o We get a return code, and an actual response if successful

-+ Mutate the message, check return code
o If greater than 1, something happened

17

external/nos/host/generic/nugget/include/application.h

enum app_status

APP_SUCCESS = 0
APP_ERROR_BOGUS_ARGS
APP_ERROR_INTERNAL
APP_ERROR_TOO_MUCH
APP_ERROR_IO
APP_ERROR_RPC
APP_ERROR_CHECKSUM
APP_ERROR_BUSY
APP_ERROR_TIMEOUT
APP_ERROR_NOT_READY

18

Implementation

e Plug libprotobuf-mutator'in nosclient

o Very straightforward
o void Mutate(protobuf::Message* message, size_t max_size_hint

e Basic corpus generation

o Messages are quite simple
o Start from empty ones, but add some non-trivial fields

e Store and triage inputs generating faulty states

19

[1]: https://github.com/google/libprotobuf-mutator

https://github.com/google/libprotobuf-mutator

Firmware: 2020-09-25,0.0.3/brick_v0.0.8232-ble3ea340
e 2 buffer overflows (1 exploited for code exec)

® 4 null pointer dereferences

e 2 unknown bugs causing a reboot

Firmware: latest (at the time), 0.0.3/brick_v0.0.8292-b3875afe2
e 2 null-ptr deref still make the chip crash
e Bug reported = not a vulnerability

All of this after a few minutes of fuzzing...

20

Comments and limitations

Bugs!

Very simple to implement

Decent performance: ~74 msg/sec
Testing in real world

SEEE

Only “scratching the surface”
Prone to false positives
Detection is tricky

Risk of bricks

XX XX

Bottom line: hard to know what’s going on the target

21

Emulation-based fuzzing

Switching to emulation-based

e We know how the OS works

e We can leak arbitrary memory with an exploit on an old firmware
o Helps setting up memory

e \With emulation, we control what is executed
o Good feedback for a fuzzer

23

Emulating Titan M

e Played with several frameworks

e Choice: Unicorn?

e Why?

Emulates CPU only

We do not care about full-system emulation

Easy to setup & tweak
Integrates nicely with AFL++

O O O O

24

[2]: https://www.unicorn-engine.org/

https://www.unicorn-engine.org/

e AFL++in Unicorn mode

o Instrument anything that can be emulated with Unicorn

o Fuzz with the classic AFL experience
e Once the emulator works, not much needs to be done

o place_input_callback to copy input sample

o Crashes detected at Unicorn errors (e.g. UC_ERR_WRITE_UNMAPPED)
e Custom mutators depending on needs

O AFL_CUSTOM_MUTATOR_LIBRARY=<mutator.so>
© AFL_CUSTOM_MUTATOR_ONLY=1 to use only that one

25

e Pretty much anything!
e Allyou needis:

O

©)
©)
©)

An entry point

Valid memory state

Registers set at the right values
One or more exit points

e Keep attack surface into account

26

SPI rescue feature

SHA25650M
0x28 (packet number + flash of feet + data)

v packet number flash of feet

® SPIlrescue allows to flash new firmware

o No password required
o Wipes user data 0x420

0x3d8 data
o Can be triggered from bootloader

® Firmware sent as rec file

SHA2565UM

0x20 (header + data)

27

The Boot ROM

Thanks to the 1-day exploit, we leaked the Boot ROM
A bug there would be disastrous
Not much code to test (only 16 KB)

|ldea: fuzz the image loader
o We could flash them with SPI rescue

... No interesting results
e The function is simple, and not processing much
e Samples are just image headers

28

SPI rescue handler

® [ocus on the rescue feature itself oxzs | | |packet nombon o tlase of et + datay
e Areinput files parsed and processed | Moo —
X packet number ash of fee
correctly? N
e Thistime input is structured
o Let's mutate it smartly :) oxsis e oz
e We use FormatFuzzer®
o Allows to generate and parse binary files !
o Follows the bt template format, from the 5
010 editor 0x20 oniec s dat)
o Requires a modified version of AFL++ v !

... also this time, no bugs (but some interesting internals revealed)
29

[4]: https://qithub.com/uds-se/FormatFuzzer

https://github.com/uds-se/FormatFuzzer

Going back to the tasks

e Tasks use protobuf
e Rely again libprotobuf-mutator
o With some tricks to embed the message name in the bytes it generates

e Focused on Identity and Keymaster
o The largest and most complex tasks
o We fuzzed Weaver too, but it is not as interesting
e First, can we find the same bugs we know about?

Yes! (apart from one...)

30

There is no free lunch

® Emulation is not a silver bullet!

e Embedded targets » hw-dependant code everywhere...
o Lots of hooks
o Code that can’t be exercised
o Especially true in system functions

e A bug doesn’t always make Unicorn crash
© No ASAN-like instrumentation
o In-page overflows, off-by-ones won’t be detected

e No full system emulation » miss some parts of code

o No system state
o The bug we missed makes the scheduler crash

—_

o ...and we don’t emulate the scheduler (<
31

e Much more capabilities compared to pure black-box

e A few heuristics we implemented:
o Monitor consecutive reads in the Boot ROM = spot buggy memcpy
o Hook accesses to specific global buffers
o Even more specific ones on different commands

e Atthe same time, everything comes at a cost

o Hooks impact performance
o In our case, not a big deal due to very specific harnesses

32

The vulnerability

param_find_digests_internal
o Checks digest tags
in KeyParameter objects

Out-of-bounds write of 1 byte to
0x1

o Can be repeated multiple times
o Huge constraints on the offset

Looks like a minor issue...

message KeyParameter
Tag tag 1
uint32 integer = 2
uint64 long_integer = 3
bytes blob = 4

message KeyParameters
repeated KeyParameter params

34

ldr.w
ldr
cmp
bne
ldr
uxtb
cmp
bhi
movs
Isl.w
tst
beq
strb

ri,lr2,#-0x4

r3, [PTR_DAT_0005d808 if nugget_app_keymaster_KeyParameter offset
ri,r3 0x20005

increment_loop_vars masked offset & Oxff

r3,lr2, #0x0 if ((4 < masked 1 masked & 0x15U 0
ro,r3 return 0x26

ro,#ox4

error_exit undefined buffer offset 1

ri,#0x1 param_3 param_3 + 1

ro,r1,ro param_4 = offset

ro,#0x15

error_exit

ri,lr7,r3

1

tag

35

ldr.w
ldr
cmp
bne
ldr
uxtb
cmp
bhi
movs
Isl.w
tst
beq
strb

ri,lr2,#-0x4

r3, [PTR_DAT_0005d808 if nugget_app_keymaster_KeyParameter offset
ri,r3 0x20005

increment_loop_vars masked offset & Oxff

r3,lr2, #0x0 if ((4 < masked 1 masked & 0x15U 0
ro,r3 return 0x26

ro,#ox4

error_exit undefined buffer offset 1

ri,#0x1 param_3 param_3 + 1

ro,r1,ro param_4 = offset

ro,#0x15

error_exit

ri, r7,r3

1

tag

36

ldr.w ri,[r2, #-0x4

ldr r3, PTR_DAT_0005d808
cmp ri,r3

bne increment_loop_vars
ldr r3,[r2,#0x0

uxtb ro,r3

cmp ro,#0x4

bhi error_exit

movs r1,#0x1

Isl.w r0,r1,ro0

tst ro, #0x15

beq error_exit

strb ri,r7,r3

if nugget_app_keymaster_KeyParameter offset

0x20005
masked offset oxff
if 4 masked 1 masked 0x15U 0

return 0x26
undefined buffer offset 1

param_3 param_3 1
param_4 = offset

Oxdeadbeef

1

tag

37

ldr.w ri,[r2, #-0x4

ldr r3, PTR_DAT_0005d808
cmp ri,r3

bne increment_loop_vars
ldr r3,[r2,#0x0

uxtb ro,r3

cmp ro,#0x4

bhi error_exit

movs r1,#0x1

Isl.w r0,r1,ro0

tst ro, #0x15

beq error_exit

strb ri,r7,r3

if nugget_app_keymaster_KeyParameter offset

0x20005
masked offset oxff
if 4 masked 1 masked 0x15U 0

return 0x26
undefined buffer offset 1

param_3 param_3 1
param_4 = offset

00X ef

1

tag

38

ldr.w ri,[r2, #-0x4

ldr r3, PTR_DAT_0005d808
cmp ri,r3

bne increment_loop_vars
ldr r3,[r2,#0x0

uxtb ro,r3

cmp ro,#0x4

bhi error_exit

movs r1,#0x1

Isl.w r0,r1,ro0

tst ro, #0x15

beq error_exit

strb ri,r7,r3

if nugget_app_keymaster_KeyParameter offset

0x20005
masked offset oxff
if 4 masked 1 masked 0x15U 0

return 0x26

undefined buffer offset 1
param_3 param_3 1
param_4 = offset

L)
)

O x

?

*~J
*~J

00000

1

tag

39

ldr.w ri,[r2, #-0x4

ldr r3, PTR_DAT_0005d808
cmp ri,r3

bne increment_loop_vars
ldr r3,[r2,#0x0

uxtb ro,r3

cmp ro,#0x4

bhi error_exit

movs r1,#0x1

Isl.w r0,r1,ro0

tst ro,#0x15

beq error_exit

strb ri,r7,r3

if nugget_app_keymaster_KeyParameter offset

0x20005
masked offset oxff
if 4 masked 1 masked 0x15U 0

return 0x26

undefined buffer offset 1
param_3 param_3 1
param_4 = offset

L)
)

O x

*~J

00000770

1

tag

40

What can we do?

e Multiple ways to reach the vulnerable code

o A few different command handlers call it
o Different base addresses for the OOB-write

e Titan M’s memory is completely static
o All structures are always located at the same addresses

e Setting one byte can be enough to break the system

41

Our approach

e Generate all writable addresses
e Highlight them in Ghidra

L \/"\5...

KEYMASTER_SPI_DATA

void callback_addr

c8 | 92 | 91 00 char cmd_request_addr

char * cmd_response_addr

42

Our approach

e Generate all writable addresses
e Highlight them in Ghidra

[V\‘5...

KEYMASTER_SPI_DATA

void callback_addr

c8 . 01 00 char cmd_request_addr

char * cmd_response_addr

43

What to overwrite

KEYMASTER_SPI_DATA
e Global structure
Stores info about SPI commands

[
e cmd_request_addr: where to store incoming Keymaster requests
® 0x192c8 = 0x101c8

44

Remainder:

Communication through nosclient

Send request using Android libs

Get a return code and (maybe) a response
A few logs on logcat

What if we crash the chip?

o Error code 2
That’s it
Debugging an exploit is... challenging

@)
@)
@)
©)

46

Accessing the UART

g
8
z

££129 031/ 9%00)

47

UART console

$ picocom /dev/ttyUSBO -b 115200
[Image: RW_A, 0.0.3/chunk_ab7976980-a9084b7 2021-12-07
18:40:23 android-build]
[1.694592 Inits done]
[1.695460 update_rollback_mask: stop at 1]
[1.695884 gpio_wiggling: AP_EL2_LOW_IRQ = 0]
Console 1is enabled; type HELP for help.
>
> help
Known commands:
apfastboot history repo taskinfo version
board_1id idle sleepmask timerinfo
help reboot stats trngstats
HELP LIST = more info; HELP CMD = help on CMD.

e Allows basic
interaction
e Prints logs

O Useful when
exploiting

So, what’s in 0x101¢c8?

OxI0Ic8

e Data doesn’t seem to be used OXHIHIHI4I

e How do we hijack execution flow? \l/

e |dea:
o Send progressively bigger payloads
o In parallel monitor the UART
© ...and see what happens

49

So, what’s in 0x101¢c8?

OxI0Ic8
e Data doesn’t seem to be used
) . OXHIHIHIHI
e How do we hijack execution flow?
e |dea:
o Send progressively bigger payloads \L

o In parallel monitor the UART
© ...and see what happens

50

So, what’s in 0x101¢c8?

0xI0Ic8
e Data doesn’t seem to be used
e How do we hijack execution flow? OXHIHIHIHI
e |dea:
o Send progressively bigger payloads
o In parallel monitor the UART J/
© ...and see what happens

51

So, what’s in 0x101¢c8?

e Data doesn’t seem to be used
e How do we hijack execution flow?

e |dea:

o Send progressively bigger payloads
o In parallel monitor the UART
© ...and see what happens

e At some point, the chip starts crashing

0xI0Ic8

OXHI4I4I4I

V2
N

52

So, what’s in 0x101¢c8?

OxI0Ic8

e Data doesn’t seem to be used
o e . ?
e How do we hijack execution flow* OXHIIHII

e |dea:

o Send progressively bigger payloads
o In parallel monitor the UART
o ...and see what happens <logging function>

e At some point, the chip starts crashing
e What if we put a valid address at the end?

53

So, what’s in 0x101¢c8?

--- UART initialized after reboot ---
[Reset cause: power-on]

[Data dO [Retry count: 1]

[Image: RW_A, 0.0.3/chunk_ab7976980-a9084b7 2021-12-07 18:40:23 android-build]

[0.001684 Inits done]

® HOW do [0.002532 update_rollback_mask: stop at 1] OxL"L"L"L"
[0.002952 gpio_wiggling: AP_EL2_LOW_IRQ = 0]

o Idea' Console is enabled; type HELP for help.

> EVENT: 2 0:0x00000001 1:0x00000000 2:0x00000000 3:0x00000000 4:0x00000000 5:
o) Y=1gle 0x00000000 6:0x00000000 7:0x00000000 8:0x00000000 9:0x00000000
[0.073052 Retry count: 1 -> 0]
0O In Task Ready Name Events Time (s) StkUsed Flags
0 R << idle >> 00000000 .000116 80/ 512 0000

o) ...an 1 R HOOKS 20000000

.001708 152/ 640 0000 pging function>
NUGGET 00000000

.012108 168/1024 0000

0

0

0
FACEAUTH 00000000 0.000456 80/2048 0000

-
e Atsome AVB 00000000 0.004440 88/4096 0000
) KEYMASTER 00000000 0.015640 88/9600 0000
e Whatif IDENTITY 00000000 0.000220 88/1952 0000
WEAVER 00000000 0.010372 240/1024 0000
CONSOLE 00000000 0.024296 80/ 576 0000
e \o/

54

Our guess:
o We are actually in the stack of a task (idle)
o We overwrite a function pointer that was pushed to the stack
o At some point, the function jumps back to it
From here on, things get complex
o No space to write a ROP chain there
o We need to move $sp
In the end, we send another command to complete the exploit

Blogpost arriving soon :)

55

e Control the execution flow of the chip

o We are not able to reconfigure the MPU

o ... but we can do pretty much anything using ROP
e We implemented again a leak command

o This time based on a O-day
o Data is not erased by the downgrade like before!
o We can leak all the secrets stored in the chip's memory

sargo:/data/local/tmp # ./nosclient leak Ox0 0x10

00 00 02 00 99 14 00 00 b9 3e 00 00 b9 3e 00 00

56

Can we leak strongbox keys?

57

StrongBox

e StrongBox: hardware-backed version of Keystore
o Generate, use and encrypt cryptographic material
e Titan M does not store keys

o Key blobs encrypted with a Key Encryption Key
m This KEK is derived in the chip from various internal elements
o Key blobs are sent to the chip to perform crypto operations

O root can use any key, but not extract it

58

Strongbox

KEKs are derived from a key ladder
e Still quite mysterious since we did not reverse it

® |t uses

o Aninternal root key
m Not readable from the Titan M firmware
o A Root Of Trust provided by the bootloader at first boot
o A saltthat is randomly generated when RoT is provisioned

-+ We can leak most of the secrets, but not the key ladder root key

59

Strongbox

There are 3 commands to use strongbox keys:

e BeginOperation
o Contains the keyblob and the characteristics of the key
o The chip will decrypt the keyblob
o And save it for later into a fixed address

e UpdateOperation
o Contains the data on which the operation is performed
o Return the output bytes

e FinishOperation
o Contains the data on which the operation is performed

o Return the output bytes

o End the operation o

Leak strongbox keys

Our strategy:
1. Get the keyblob from the device

o Storedin /data/misc/keystore/persistent.sqglite
2. Forge a BeginOperation request
3. Leak the decrypted key from the chip memory

sargo: /data/local/tmp # ./nosclient leak kb
- Key name: strongbox (size: 128)

sargo:/data/local/tmp # ./nosclient leak kb -k strongbox
f3 7d 3d 7d ca 56 5e a0 18 ff 83 76 19 39 eb cl

61

e Ability to send commands to the chip
o Being root
o Ordirect access to the SPI bus

® Access to the keyblobs

o Being root
o Or find a way to bypass FBE...

62

Mitigation

KeyGenParameterSpec spec new KeyGenParameterSpec.Builder("key_name”
KeyProperties.PURPOSE_ENCRYPT KeyProperties.PURPOSE_DECRYPT
setBlockModes(KeyProperties.BLOCK_MODE_CBC
setEncryptionPaddings(KeyProperties.ENCRYPTION_PADDING_PKCS7)
setIsStrongBoxBacked(true
setUserAuthenticationRequired(true

63

Conclusion

Fuzzing allowed us to find more bugs

With black box, you easily get the surface bugs

Emulation-based fuzzing is particularly effective of such target
o Yet few tricks are required to optimize the results

We found a critical O-day

o Allowed us to execute code on the chip
o Permit to leak anything from the chip's memory

A single software vulnerability is enough to leak strongbox keys

65

Tools & resources:
https://github.com/quarkslab/titanm

Thank you!

@max_r_b
contact@quarkslab.com

Quarkslab

@DamianoMelotti

https://github.com/quarkslab/titanm
https://twitter.com/@max_r_b
https://twitter.com/@DamianoMelotti

