Attacking Ultra-Wideband

Security Analysis of UWB Applications in Smartphones

Alexander Heinrich & Jiska Classen Secure Mobile Networking Lab - SEEMOO Technical University of Darmstadt, Germany

emergenCITY

Ultra-Wideband (UWB)

Nobody knows what it is or does

Non-interceptable with cheap SDRs

Must be hacker-proof! Only available in the latest generation of devices

Frequency in GHz

Impulse radio

Single-sided two-way ranging (SS-TWR)

- Signals travel with speed of light
- You cannot travel faster than speed of light

- Initiator and responder must trust each other
- They have a pre-shared secret

UWB in the Apple Ecosystem

AirDrop (iOS 13) First prototype w/o frameworks. Firmware already hints towards future applications.

HomePod Handoff (iOS 14.4) HomePod is permanently connected to power and beacons measurement packets continuously.

Nearby Interaction (iOS 14) Framework to enable ranging between Apple devices & third parties.

AirTag (iOS 14.5) AirTag localization with distance and angle, battery-efficient implementation on AirTag.

...to be continued

Digital Car Key (iOS 15) Support for UWB-based digital keys as successor to NFC.

Nearby Share (Android)

Android UWB SDK

UWB Internals

Security aspects on iOS

NIDiscoveryToken

iOS Discovery

Device discovery on Android

Controller

Controllee

Security aspects of Android Ranging

Controllee

Controller

SessionKeyInfo

// SessionKeyInfo is used to encrypt the ranging session.

// If the profile uses STATIC STS, this byte array is 8-byte
two bytes as Vendor_ID and next six bytes as STATIC_STS_IV

No way to attack Android ranging if it's insecure by design.

All publicly available UWB profiles use STATIC_STS.

Accuracy & Reliability

Accurate to 50cm

Accurate to 50cm

GWEn: Gimbal-based platform for Wireless Evaluation

Measurement Setup

Lab

Garage

Results

Attacks against Keyless Entry

Legacy Car Key Relay Attack

Stronger Signal = Lower Distance

While upper time limits can be enforced, the signal's modulation scheme doesn't allow for fully preventing relay attacks.

UWB Relay Attack

- Eve increases the time of flight (propagation delay).
- The distance will be enlarged, not shortened 😟

Attack #1: GhostPeak

by P.Leu, G. Camurati, A. Heinrich, M. Roeschlin, C. Anliker, M. Hollick, J. Classen from ETH Zurich and TU

Due to reflections and blocking objects, the non-line of sight path might be stronger than the actual (line of sight) distance!

when the key is in a pocket.

Solution: Find the first (shortest) path by correlating the received signal with a template signal.

We take a path that has meets a minimum power threshold & is within the search window.

Use the first packet as trigger for the attack. Confuse the correlation algorithm in the following packets with "ghost peaks".

Implementation with UWB Development Kit

Attack costs reduce to 50€ with a dev kit. Restriction: We have to send a valid preamble and SFD, but can reduce their power. Effectively we only overshadow the STS!

Affected devices

Device Type	Affected	Success rate
Apple U1 chip	✔ (max. 12m)	4%
Samsung Galaxy phones	not reliable	not measurable
Qorvo DW3000 UWB chip	not reliable	not measurable
NXP Trimension chips	not reliable	not measurable

If one of the involved chips is vulnerable, the attack works, e.g., distance reduction U1–NXP is possible.

Countermeasures

- Attack success is random, as not all overlay signals lead to distance reduction.
 - Monitor jumps in distance measurements.
 - Combine 10–15 measurements to mean results.

- Attack exploits back-search window in correlation.
 - Reduce back-search window to <12m
 (but reduces usability in non-line of sight!)

- Overshadowing the STS might corrupt bits.
 - Monitor for bitflips in STS, only allow a low threshold.

Attack #2: Time for Change

by C. Anliker, G. Camurati, S. Čapkun from ETH Zurich

Clock Drifts in Single-Sided ranging

$$T_{ToF} = \frac{1}{2} \bullet (T_{round1} - T_{reply1} (1 - clockDrift))$$

Clock Drift Measurement

Attack Principle

reduction

Attack Results

Example distance reduction

Affected devices

Device Type	Affected	Reason
Apple devices	×	Use on DS-TWR
Android phones	×	Use on DS-TWR
Qorvo DW3000 UWB chip	✓	If configured to SS-TWR
NXP Trimension chips	?	not tested

Countermeasures

- Attack results controllable and succeed 100%
 - Detect changes in the clock drift
 - Monitor duplicate signals

- No secure way to verify the clock-drift
 - Based on carrier-frequency
 - Reducing tolerances can help

Conclusion

- Physical layer attacks are hard to prevent
 - Demodulation is complex
 - The real-world can never be simulated

- Enhancing the standards
 - Proper sample implementations can prevent certain attacks
 - \circ Good limits

- Many things to explore
 - Different manufacturers
 - OS-level integration

Attack the secure ranging session keys.

Create a universal attack that works on the signal level.

https://github.com/seemoo-lab \mathbf{C}

Twitter: @naehrdine, @Sn0wfreeze

[jclassen|aheinrich]@seemoo.de

AirDrop

Nearby Interaction

Find My

Normal Digital Key behavior

Reactive overshadow

UWB to X

UWB System Architecture

Lessons Learned

- Bluetooth and Ultra Wideband are tightly coupled on iOS.
- Apple's own RTKit-based wireless chips have an interesting architecture with many security features like secure boot and ASLR.
- Many features in the chip can be instrumented from user space.

Content

Introduction to UWB

- Applications
 - Now the Car Key is included
- UWB Internals on iOS
 - UWB Frameworks and System Components
 - Which iOS Version supports what (-> Jiska double-checks)
- UWB internals on Android
 - What processes and Frameworks are involved ? -> Alex checks
 - Which protocols supports what? -> Samsung, Nearby Share, Android UWB
- Accuracy and reliability of Smartphones
 - Introduction to GWEn
 - Our measurement setup
 - Results
- Attacks against UWB
 - What does not work
 - Relay and Amplification attacks
 - GhostPeak
 - Time for Change

Attacking the packet timestamps

Timestamp / RMARKER

