
Beyond Java: Obfuscating 
Android Apps with Purely 

Native Code
Laurie Kirk



whoami

 Laurie Kirk

 Reverse Engineer at Microsoft 

 Specialize in cross-platform malware 
with a focus on mobile malware

 Run YouTube channel @lauriewired

 Representing myself as an individual 
security researcher today (not 
representing Microsoft)

@lauriewired



Analysis Materials

 LaurieWired TROOPERS23 
Github Repo

 https://github.com/LaurieWired/An
droidPurelyNative_Troopers23



The only difference between this app…



… and this app



is that part of the code is written in C++.



Agenda

 Obfuscate an Android app

 Use purely native code

 Mask our API calls



Java is the main language in Android

Managed code
Java / Kotlin

Native code
C / C++



C++ == obfuscation?



Same file except I added a blank C++ stub





Further Native Obfuscation Advantages

 More challenging to reverse engineer

 Read assembly instead of Java

 Understand JNI invocations

 Remove x86 support to thwart 
emulators



How far can we go?



Purely Native Code Methodology

Remove Java entrypoint

Translate methods to C++

Conceal Android API calls



Removing the Java Entrypoint



The Manifest defines entrypoints in 
Java

MyApp.apk

classes.dex

package com.app.myapp

public class MyMain {

myJavaMethod()

AndroidManifest.xml

<activity name=“MyMain”>

MAIN
LAUNCHER

<activity/>

Trigger Java



Hands On:
Finding the Standard Entrypoint



Is this possible to bypass?



Android Provides NativeActivity

 Helper class provided in Android framework

 Used for gaming apps

 Calls the native library specified in metadata



Android Purely NativeActivity

main android_main()

Native 
App Glue ANativeActivity_onCreate()

Native 
Activity onCreate()1

2

3



Native Application Glue

 Part of the Android NDK platform code

 Handles application context

 Calls user main

 Defines looper listening for events



Native App Glue Stores Context



User code goes in android_main()



Hands On:
Masking the Entrypoint



Removing Resource Files

 Optionally remove resources files

 Android libraries

 Assets

 Further reduces analysis surfaces



Can we remove the AndroidManifest?





Example Purely 
Native App

App: rawdrawandroid



Excellent, now we can draw malicious shapes!



Translating Java Methods to C++



Standard differences between Java 
and C++

Java C++



We want to manipulate the device.



Android API Framework

 Library of APIs used by developers

 Callable classes, methods, and variables

 Interface to Android services and hardware



Using the JNI to Invoke Android APIs

 The Android framework is exposed in 
Java

 JNI is the bridge between Java and 
C++



Hands On:
Translating Java to Native C++



JNI calls are easy to read / hook.



Further JNI Drawbacks

 Methods are commonly hooked with 
Frida

 Class names are plaintext strings

 Easy to reverse engineer



What if we want to be stealthier?



Hiding API Calls Via Binder



Case Study: Dialing a Phone

 Intents send the dial request

 Binder sends this to the 
TelephonyManager service

 TelephonyManager service handles event



Knowledge time: 
Exploring the Binder



Enables IPC and RPC in Android

App X App Y

“ping”

“pong”



Wrapped by many popular classes

 Intents

 Messengers

 ContentProviders

 Android Interface Definition 
Language (AIDL)



Can we bypass these common targets?



Let’s dive even deeper



Implemented as a kernel driver



More Detailed Binder Architecture

UserApp

Binder 
Driver

transact()

Service

P
rocess M

em
oryP

ro
ce

ss
 M

em
or

y

allocateallocateBinder 
object

Binder 
object

onTransact()



Binder Invocation Backend

Binder allocates memory in target process

Process handles with onTransact()

Writes response back

Binder retrieves and returns response



Not required for non-
IOCTL commands



We want to transact with existing services.



ServiceManager handles system services.



But we can’t use ServiceManager 

Cannot resolve symbol



It’s hidden and limited to system use



Or is it?



Reflection doesn’t respect hidden APIs lol



No more errors!

Reflection



Hands On:
Finding Callable Services



Bound 
Invokable 
services

ActivityManagerServiceActivityManagerService
LocationManagerLocationManager
PackageManagerServicePackageManagerService
TelephonyManagerTelephonyManager
SensorServiceSensorService
WifiManagerNotificationManagerWifiManagerNotificationManager
AudioManagerAudioManager
PowerManagerWindowManagerPowerManagerWindowManager
ClipboardServiceInputMethodManagerClipboardServiceInputMethodManager
AlarmManagerBatteryManagerAlarmManagerBatteryManager
StorageManagerConnectivityManagerStorageManagerConnectivityManager
BluetoothManagerVibratorServiceBluetoothManagerVibratorService
UserManagerUserManager
AccessibilityManagerAccessibilityManager



Use Parcel objects to transmit data

 Container for messages

 Requires target interface

 Must write method arguments



Call transact() to communicate

 Transmits the message 

 Receives the response via another Parcel

 Requires method code instead of name



Hands On:
Invoking dial via Binder



We need to do this in C++.



I won’t make you 
translate it all.

Phew!



We already know native translation



Hands On:
Examining our Final Purely Native 
App



Test time!



Encrypt class strings for 
further protection

 Encrypt string targets of reflective calls

 Avoid plaintext

 Target services

 Target class names



Summarizing Our Obfuscation



Purely Native Code

 Masks the entrypoint

 No pretty Java code

 Challenges automated and human analysts



Direct Binder Invocation

 Use for system service calls

 Entirely avoids method names

 Bypasses hooks



Will we see this more?



It’s hard to write lol





Thank you!



Bonus Section



References

 Presentation details

 Supporting code

 LaurieWired TROOPERS23 
Github Repo

 https://github.com/LaurieWired/An
droidPurelyNative_Troopers23



Android Native Code Resources

 Sample: native-activity

 https://developer.android.com/ndk/samples/sample_na

 Android framework NativeActivity class

 https://android.googlesource.com/platform/frameworks/base.git/+/master/co
re/java/android/app/NativeActivity.java

 Rawdrawandroid

 https://github.com/cnlohr/rawdrawandroid



Java Native Interface (JNI)

 JNI Functions

 JNI Types and Signatures



Binder

 Documentation

 https://developer.android.com/reference/android/os/Binder

 Source code

 https://cs.android.com/android/kernel/superproject/+/common-android-
mainline:common/drivers/android/binder.c



SystemManager

 Source code

 https://cs.android.com/android/platform/superproject/+/master:frameworks/
base/core/java/android/os/ServiceManager.java



Native App Structure
M

an
ag

ed
 C

od
e

MyApp.apk

private native void doSomethingNative()

doSomething() {

doSomethingNative();

void Java_com_MyMain_doSomethingNative() {

std::string hello = "Hello from C++";

…

MyMain.java

libnative-lib.so

JNI

N
at

iv
e 

C
od

e



We can use NativeActivity as main

Entrypoint User code library



Define Obfuscation

 Obfuscation obscures app data and functionality

 Essential for Android

 Decompiled into pretty Java code



Native Code in Android

 Implemented as Linux ELF 
binaries

 Shared object (.so) files

 Compiled to run on particular 
instruction set architectures



Standard Entrypoint Recognition
Java entrypoint

Java implementation



Android NDK

 NDK stands for Native Development Kit

 Contains tools for writing C/C++ code in Android



NativeActivity

 Runs in the main app thread

 Managed code entrypoint

 Sets up and loads user native library



Minimal Native APK

Defined entrypoint

No such class!



Java Method



Equivalent C++ Method (fix picture)



Let’s make the first line look more like 
the second.



Binding to System Services with 
ServiceManager

 Returns Binder object for target service

 Manages system services

 Limited to system usage



Simple Java Transaction Example

System interface

Method code



Service Constant Mappings

TELEPHONY_SERVI
CE = "phone";

TELECOM_SERVICE 
= "telecom";

CARRIER_CONFIG_
SERVICE = 

"carrier_config";

EUICC_SERVICE = 
"euicc";

EUICC_CARD_SERV
ICE = "euicc_card";

MMS_SERVICE = 
"mms";

CLIPBOARD_SERVI
CE = "clipboard";

TEXT_CLASSIFICATI
ON_SERVICE = 

"textclassification";

SELECTION_TOOLB
AR_SERVICE = 

"selection_toolbar";

FONT_SERVICE = 
"font";

ATTENTION_SERVIC
E = "attention";

ROTATION_RESOLV
ER_SERVICE = 

"resolver";



Resulting Code in Ghidra

???


