
Beyond Java: Obfuscating 
Android Apps with Purely 

Native Code
Laurie Kirk



whoami

 Laurie Kirk

 Reverse Engineer at Microsoft 

 Specialize in cross-platform malware 
with a focus on mobile malware

 Run YouTube channel @lauriewired

 Representing myself as an individual 
security researcher today (not 
representing Microsoft)

@lauriewired



Analysis Materials

 LaurieWired TROOPERS23 
Github Repo

 https://github.com/LaurieWired/An
droidPurelyNative_Troopers23



The only difference between this app…



… and this app



is that part of the code is written in C++.



Agenda

 Obfuscate an Android app

 Use purely native code

 Mask our API calls



Java is the main language in Android

Managed code
Java / Kotlin

Native code
C / C++



C++ == obfuscation?



Same file except I added a blank C++ stub





Further Native Obfuscation Advantages

 More challenging to reverse engineer

 Read assembly instead of Java

 Understand JNI invocations

 Remove x86 support to thwart 
emulators



How far can we go?



Purely Native Code Methodology

Remove Java entrypoint

Translate methods to C++

Conceal Android API calls



Removing the Java Entrypoint



The Manifest defines entrypoints in 
Java

MyApp.apk

classes.dex

package com.app.myapp

public class MyMain {

myJavaMethod()

AndroidManifest.xml

<activity name=“MyMain”>

MAIN
LAUNCHER

<activity/>

Trigger Java



Hands On:
Finding the Standard Entrypoint



Is this possible to bypass?



Android Provides NativeActivity

 Helper class provided in Android framework

 Used for gaming apps

 Calls the native library specified in metadata



Android Purely NativeActivity

main android_main()

Native 
App Glue ANativeActivity_onCreate()

Native 
Activity onCreate()1

2

3



Native Application Glue

 Part of the Android NDK platform code

 Handles application context

 Calls user main

 Defines looper listening for events



Native App Glue Stores Context



User code goes in android_main()



Hands On:
Masking the Entrypoint



Removing Resource Files

 Optionally remove resources files

 Android libraries

 Assets

 Further reduces analysis surfaces



Can we remove the AndroidManifest?





Example Purely 
Native App

App: rawdrawandroid



Excellent, now we can draw malicious shapes!



Translating Java Methods to C++



Standard differences between Java 
and C++

Java C++



We want to manipulate the device.



Android API Framework

 Library of APIs used by developers

 Callable classes, methods, and variables

 Interface to Android services and hardware



Using the JNI to Invoke Android APIs

 The Android framework is exposed in 
Java

 JNI is the bridge between Java and 
C++



Hands On:
Translating Java to Native C++



JNI calls are easy to read / hook.



Further JNI Drawbacks

 Methods are commonly hooked with 
Frida

 Class names are plaintext strings

 Easy to reverse engineer



What if we want to be stealthier?



Hiding API Calls Via Binder



Case Study: Dialing a Phone

 Intents send the dial request

 Binder sends this to the 
TelephonyManager service

 TelephonyManager service handles event



Knowledge time: 
Exploring the Binder



Enables IPC and RPC in Android

App X App Y

“ping”

“pong”



Wrapped by many popular classes

 Intents

 Messengers

 ContentProviders

 Android Interface Definition 
Language (AIDL)



Can we bypass these common targets?



Let’s dive even deeper



Implemented as a kernel driver



More Detailed Binder Architecture

UserApp

Binder 
Driver

transact()

Service

P
rocess M

em
oryP

ro
ce

ss
 M

em
or

y

allocateallocateBinder 
object

Binder 
object

onTransact()



Binder Invocation Backend

Binder allocates memory in target process

Process handles with onTransact()

Writes response back

Binder retrieves and returns response



Not required for non-
IOCTL commands



We want to transact with existing services.



ServiceManager handles system services.



But we can’t use ServiceManager 

Cannot resolve symbol



It’s hidden and limited to system use



Or is it?



Reflection doesn’t respect hidden APIs lol



No more errors!

Reflection



Hands On:
Finding Callable Services



Bound 
Invokable 
services

ActivityManagerServiceActivityManagerService
LocationManagerLocationManager
PackageManagerServicePackageManagerService
TelephonyManagerTelephonyManager
SensorServiceSensorService
WifiManagerNotificationManagerWifiManagerNotificationManager
AudioManagerAudioManager
PowerManagerWindowManagerPowerManagerWindowManager
ClipboardServiceInputMethodManagerClipboardServiceInputMethodManager
AlarmManagerBatteryManagerAlarmManagerBatteryManager
StorageManagerConnectivityManagerStorageManagerConnectivityManager
BluetoothManagerVibratorServiceBluetoothManagerVibratorService
UserManagerUserManager
AccessibilityManagerAccessibilityManager



Use Parcel objects to transmit data

 Container for messages

 Requires target interface

 Must write method arguments



Call transact() to communicate

 Transmits the message 

 Receives the response via another Parcel

 Requires method code instead of name



Hands On:
Invoking dial via Binder



We need to do this in C++.



I won’t make you 
translate it all.

Phew!



We already know native translation



Hands On:
Examining our Final Purely Native 
App



Test time!



Encrypt class strings for 
further protection

 Encrypt string targets of reflective calls

 Avoid plaintext

 Target services

 Target class names



Summarizing Our Obfuscation



Purely Native Code

 Masks the entrypoint

 No pretty Java code

 Challenges automated and human analysts



Direct Binder Invocation

 Use for system service calls

 Entirely avoids method names

 Bypasses hooks



Will we see this more?



It’s hard to write lol





Thank you!



Bonus Section



References

 Presentation details

 Supporting code

 LaurieWired TROOPERS23 
Github Repo

 https://github.com/LaurieWired/An
droidPurelyNative_Troopers23



Android Native Code Resources

 Sample: native-activity

 https://developer.android.com/ndk/samples/sample_na

 Android framework NativeActivity class

 https://android.googlesource.com/platform/frameworks/base.git/+/master/co
re/java/android/app/NativeActivity.java

 Rawdrawandroid

 https://github.com/cnlohr/rawdrawandroid



Java Native Interface (JNI)

 JNI Functions

 JNI Types and Signatures



Binder

 Documentation

 https://developer.android.com/reference/android/os/Binder

 Source code

 https://cs.android.com/android/kernel/superproject/+/common-android-
mainline:common/drivers/android/binder.c



SystemManager

 Source code

 https://cs.android.com/android/platform/superproject/+/master:frameworks/
base/core/java/android/os/ServiceManager.java



Native App Structure
M

an
ag

ed
 C

od
e

MyApp.apk

private native void doSomethingNative()

doSomething() {

doSomethingNative();

void Java_com_MyMain_doSomethingNative() {

std::string hello = "Hello from C++";

…

MyMain.java

libnative-lib.so

JNI

N
at

iv
e 

C
od

e



We can use NativeActivity as main

Entrypoint User code library



Define Obfuscation

 Obfuscation obscures app data and functionality

 Essential for Android

 Decompiled into pretty Java code



Native Code in Android

 Implemented as Linux ELF 
binaries

 Shared object (.so) files

 Compiled to run on particular 
instruction set architectures



Standard Entrypoint Recognition
Java entrypoint

Java implementation



Android NDK

 NDK stands for Native Development Kit

 Contains tools for writing C/C++ code in Android



NativeActivity

 Runs in the main app thread

 Managed code entrypoint

 Sets up and loads user native library



Minimal Native APK

Defined entrypoint

No such class!



Java Method



Equivalent C++ Method (fix picture)



Let’s make the first line look more like 
the second.



Binding to System Services with 
ServiceManager

 Returns Binder object for target service

 Manages system services

 Limited to system usage



Simple Java Transaction Example

System interface

Method code



Service Constant Mappings

TELEPHONY_SERVI
CE = "phone";

TELECOM_SERVICE 
= "telecom";

CARRIER_CONFIG_
SERVICE = 

"carrier_config";

EUICC_SERVICE = 
"euicc";

EUICC_CARD_SERV
ICE = "euicc_card";

MMS_SERVICE = 
"mms";

CLIPBOARD_SERVI
CE = "clipboard";

TEXT_CLASSIFICATI
ON_SERVICE = 

"textclassification";

SELECTION_TOOLB
AR_SERVICE = 

"selection_toolbar";

FONT_SERVICE = 
"font";

ATTENTION_SERVIC
E = "attention";

ROTATION_RESOLV
ER_SERVICE = 

"resolver";



Resulting Code in Ghidra

???


