
Fault Injection Attacks on Secure 
Automotive Bootloaders

Nils Weiss <nils@dissec.to>

Enrico Pozzobon <enrico@dissec.to>

mailto:%3cnils@dissec.to
mailto:%3cenrico@dissec.to


Fault Injection Attacks on Secure 
Automotive Bootloaders

Nils Weiss <nils@dissec.to>

Enrico Pozzobon <enrico@dissec.to>

mailto:%3cnils@dissec.to
mailto:%3cenrico@dissec.to


Threat Model for HW Attacks in Automotive

• Vehicle Theft (entire cars)
• Break immobilizers

• Stolen ECUs aftermarket
• Virgin ECUs

• Chip-Tuning

• Feature on Demand

• Mileage manipulation

• Ad-Blue manipulation

• E-Fuel detection



The target:

• Gateway-ECU

• Root of the Network

• Trust anchor for certain services



Safe and "Secure" microcontrollers

Silicon of the 
MPC5748G, 

courtesy 
of Texplained



What makes an MCU "Automotive"?

• It is tolerant to a wide range of 
temperatures.

• It can withstand high voltage 
transients.

• It doesn't break easily in the 
presence of electromagnetic 
pulses.



Existing glitching attacks on ECUs

• Safety ≠ Security from Riscure (Attacking DCF Record Loading)

• BAM BAM by Colin o'Flynn

• Nasahl and Timmers used glitching attacks on an evaluation setup to 
obtain code execution on an AUTOSAR-based demonstration ECU



Controlling PC by Fault Injection on ARM

Single flipped bit



Wild Jungle Jumps

• "Until now, wild jungle jumps 
were only exploitable in 
laboratory environments and 
considered impossible in 
practice" - Spensky et 

al. Glitching demystified: Analyzing control-flow-
based glitching attacks and defenses

Picture by James Gratchof – Proving the wild jungle jump



UDS / ISO 14229-1:2020

• Communication with ECUs is mostly 
standardized

• Modern ECUs supports UDS (Unified 
Diagnostic Services)
• Configuration of ECUs

• Reading Information and DTCs

• Erasing / Flashing

• UDS defines Flashing-Procedure
• Small variations for each individual OEM



UDS Update Process

Bootloader

Application v1

Signature is: OK

PC



UDS Update Process

Bootloader

Application v1

Signature is: OK

PC



UDS Update Process

Bootloader

Application v1

Signature is: OK

PC



UDS Update Process

Bootloader

Application v1

Signature is: OK

PC



UDS Update Process

<empty flash space>

Bootloader PC



UDS Update Process

Bootloader

Application v2

Signature is: Not OK

PC



UDS Update Process

Bootloader

Application v2

Signature is: OK

PC



UDS Update Process

Bootloader

Application v2

PC

Signature is: OK



If the application signature verification fails,
the bootloader will not jump to the application

Bootloader

Corrupted Application
/

Exploit Firmware

PC

Signature is: Not OK



The attack: Use fault injection to jump from 
bootloader to unauthenticated payload

Bootloader

Corrupted Application
/

Exploit Firmware

PC

Signature is: Not OK



UDS Security Access

• Security Access Algorithms
are available on GitHub

• OEM-Tools leak on shady internet forums

• Many Security Access implementations
are leaked or broken or easy to overcome





EMFI parameters (search space)

• Injection coil: (shape, size, number and direction of turns),

• Position (x, y, z) in space of the injection coil,

• Duration of the activation of the coil,

• Voltage across the coil (aka across the injector reservoir capacitor),

• Offset from trigger signal,
• if the target firmware has deterministic execution time, this is equivalent to choosing 

which instruction to attack!

• Memory / state of the target
• Depends on the messages exchanged before the fault.

• And other environmental factors that can't be accounted for on stage.



EMFI parameters (search space)

• Injection coil: (shape, size, number and direction of turns),

• Position (x, y, z) in space of the injection coil,

• Duration of the activation of the coil,

• Voltage across the coil (aka across the injector reservoir capacitor),

• Offset from trigger signal,
• if the target firmware has deterministic execution time, this is equivalent to 

choosing which instruction to attack!

• Memory / state of the target
• Depends on the messages exchanged before the fault.

These don't depend on 
the target software, 
only on the hardware



EMFI Fault setup

• ChipSHOUTER: generates the EMP,

• CNC Mill: Positions the injection coil in the 3D space,

• Generic FPGA: Precisely triggers on a specific bit of a CAN frame,

• ChipWhisperer: Delays the trigger (optional, can be done by FPGA),

• Programmable supply: to power-cycle the target when it crashes

• CAN interface: to transfer the exploit and bring the ECU to a specific 
state

• UART interface: to get feedback from the target

Total cost: ~5000$ (can be reduced to ~300$ by using PicoEMP)





Fault Outcomes

• Normal Response

• Corrupted CAN response

• ECU resets, no response
• Emission of an exception Stack 

Dump over UART



Example of a stack trace
Machine Check Exception

Exception number: 1

Exception address: 0105D1EE

Stack pointer: 40006F98

R0 010F2FB8 R8 400070EC R16 00000000 R24 400070EC

R1 40006F98 R9 013996A8 R17 00000000 R25 4004FAD8

R2 013DF918 R10 00000005 R18 00000000 R26 00000002

R3 02029200 R11 FFF1E400 R19 00000000 R27 00000002

R4 0000FFF1 R12 400070DC R20 00000000 R28 0000E400

R5 00000000 R13 4001DD90 R21 00000000 R29 0000FFF1

R6 010F3130 R14 00000000 R22 00000000 R30 40007090

R7 0000FFF1 R15 00000000 R23 00000000 R31 4003EFA8

--------------------------------------------------------------

XER 00000000 CR 80000000 LR 010F2FB8

USPRG0 00000000 CTR 010F2EF4 IP --------

--------------------------------------------------------------

SPRG0 00000000 SRR0 013D1FD6 IVPR 01000100 MSR 00000200

SPRG1 400200C8 SRR1 02029200 DEAR 00000000 PVR 81530000

SPRG2 00000000 CSSR0 00000000 ESR 00000000

SPRG3 00000000 CSSR1 00000000 MCSR 00088008

MCSSR0 0105D1EE MCAR 00000078

MCSSR1 02021200

PID0 00000000

--------------------------------------------------------------

PIR 00000000

S T A C K T R A C E

> 0x010F2FB8

> 0x010F307A

> 0x010F1F1E

> 0x011281FC

...

If the ECU doesn't emit stack 
traces, it is usually possible to 
source the same component or a 
similar one to program with a toy 
example firmware and find most 
fault parameters



Search Algorithm 
Optimizations

• Some parameters take longer to 
change (due to physical constraints)

• Some feedbacks correlate better with 
code execution than others

• Interrupt handlers are used as a 
feedback channel to rate glitches



Ensure most of the unsigned firmware is 
composed of NOP slides / jumps to the exploit

Slide

Exploit

Slide



Structure of the exploit firmware
rept 1000

rept 113

se_nop // 2 bytes

endr

e_b _start // 4 bytes

endr

_start:

// The actual exploit code is written here

rept 2000

rept 113

se_nop // 2 bytes

endr

e_b _start // 4 bytes

endr

Slide

Exploit

Slide



Search algorithm performance



Other interesting data leakage through faults





Program Counter corruption on PPC

• The PPC VLE instruction set is commonly found on many ECU which 
are critical for security.

• In PPC, 00 is an invalid instruction, and the CPU will immediately fault 
if zeroes are fetched as an instruction.

• Moreover, in PPC, the program counter and linker register are special 
registers, so they can’t be written by normal MOV or LD instructions

• Is PPC immune to fault injection attacks?

dissecto GmbH – contact-us@dissecto.com



Disruption of Instruction Flow:
Misaligning the Stack Pointer

…

Start of function

End of function



Exploitation

• Dumping memory

• JTAG

• Writing to Flash Memory

• Access to HSM API

• MPC / SPC Processors:
• Manipulation of DCF Records (Chip Configuration)



How about ARM?

• Next generation of ECU
Processors will be ARM

• Way-higher likelihood of
PC corruption



Mitigation

• Use Memory Protection Units (MPU) => W^X

• Disable execution early in boot process to minimize attack surface

• Running the Bootloader in HSM might help:
• Execution from functionally separated section of flash memory

• Documentation for HSMs is kept secret, making exploit development harder

• ISO14229 (UDS) Software Update Process needs to be revised



Discussion

• UDS Protocol is broken in respect to fault injection
• We have Encrypted firmwares, that make the attack difficult
• It's a design flaw of UDS, adapatable to a wide range of ECUs
• No reverse engineering is required
• (Maybe HW-Reversing)
• Algorithms can be trained on EvalBoards and adapted to ECUs
• Attack can be automated
• PC corruption attack on PPC
• Attack was demonstrated on three different Gateway ECUs
• Different Processors, different OEMs, different Firmware, 

different Bootloader



Summary

• Efficient fault injection attacks demonstrated for code execution on real-world 
targets.

• EFISSA enables feasible black-box attacks

• Code injection into victim device's flash allows unauthorized execution via EMFI

• Higher success probability with larger programmable flash.

• Attack successful within minutes without knowledge of target software.

• Reproducible on multiple ECUs with minimal code changes.

• Cheap, available equipment; easy automation.

• Algorithm (EFISSA) reduces fault finding time from weeks to <1 hour.



Disclosure 

• April 2022 major German OEMs were informed



Thank you for your patience!


	Folie 1: Fault Injection Attacks on Secure Automotive Bootloaders
	Folie 2: Fault Injection Attacks on Secure Automotive Bootloaders
	Folie 3: Threat Model for HW Attacks in Automotive
	Folie 4: The target:
	Folie 5: Safe and "Secure" microcontrollers
	Folie 6: What makes an MCU "Automotive"?
	Folie 7: Existing glitching attacks on ECUs
	Folie 8: Controlling PC by Fault Injection on ARM
	Folie 9: Wild Jungle Jumps
	Folie 10: UDS / ISO 14229-1:2020
	Folie 11: UDS Update Process
	Folie 12: UDS Update Process
	Folie 13: UDS Update Process
	Folie 14: UDS Update Process
	Folie 15: UDS Update Process
	Folie 16: UDS Update Process
	Folie 17: UDS Update Process
	Folie 18: UDS Update Process
	Folie 19: If the application signature verification fails, the bootloader will not jump to the application
	Folie 20: The attack: Use fault injection to jump  from bootloader to unauthenticated payload
	Folie 21: UDS Security Access
	Folie 22
	Folie 23: EMFI parameters (search space)
	Folie 24: EMFI parameters (search space)
	Folie 25: EMFI Fault setup
	Folie 26
	Folie 27: Fault Outcomes
	Folie 28: Example of a stack trace
	Folie 30: Search Algorithm Optimizations
	Folie 31: Ensure most of the unsigned firmware is composed of NOP slides / jumps to the exploit
	Folie 32: Structure of the exploit firmware
	Folie 33: Search algorithm performance
	Folie 34: Other interesting data leakage through faults
	Folie 35
	Folie 36: Program Counter corruption on PPC
	Folie 37: Disruption of Instruction Flow: Misaligning the Stack Pointer
	Folie 38: Exploitation
	Folie 39: How about ARM?
	Folie 40: Mitigation
	Folie 41: Discussion
	Folie 42: Summary
	Folie 43: Disclosure 
	Folie 44: Thank you for your patience!

