

Forensic Examination of Ceph

Florian Bausch 28.06.2023, Troopers 2023

Agenda

- Motivation and Background
- Forensic Examination of Ceph
- Implementation and Evaluation of Vampyr
- Conclusion and Outlook

Motivation and Background

- Master Thesis
 - o 2018
 - FAU Erlangen / Hochschule Albstadt-Sigmaringen
- Software-defined storage with growing importance
 - Clusters of commodity hardware logically joined by software to a large storage with redundancy
 - For example: OpenStack

Motivation and Background

- Ceph released *BlueStore* storage format in 2017
 - Documentation of data structures
 - Categorization into Carrier categories
 - Filesystem category
 - Content Category
 - Metadata Category
 - Filename Category
 - Application Category
 - Implementation of a forensic software tool (Vampyr)

Motivation and Background

- Not every OSD (object storage device, i.e., HDD / SSD) stores every object of the RADOS.
- CRUSH algorithm determines OSDs of an object.
 - Deterministic
 - But seems random

https://i0.wp.com/ceph.com/wp-content/uploads/2017/08/filestore-vs-bluestore-2.png

Forensic Examination of Ceph

Forensic Examination

- BlueStore OSDs with RocksDB Key-Value Store
- Test cluster with three VMs
 - Defined states
- OSDs from clusters with SAP HANA installed
- Reading source code
- Reading hex dumps

Key-Value Store

- o Stores metadata of objects
- Uses a RocksDB database
 - Located in BlueFS
- Restore / extract KV store
 - For metadata analysis
 - To find / restore objects on OSD

BlueFS

Get the Key-Value Store

- 1. Read BlueFS superblock
- 2. Jump to transaction log
- 3. Read and interpret all the transactions sequentially
- 4. Get list of files
- 5. Read all extents of files and write to analysis machine
- 6. Run the ldb command from RocksDB

Object Metadata

Prefix	Description	
S	OSD metadata (S = super)	
Т	OSD statistics (statfs data structure)	
С	Collection information	
0	Object metadata	
М	Additional object metadata	
Ρ	Placement Group metadata	
L	Deferred transactions	
В	Bitmap metadata	
b	Bitmaps	
Х	Shared blob information	

Prefix	Description	
S	OSD metadata (S = super)	
Т	OSD statistics (statfs data structure)	
С	Collection information	
0	Object metadata	
М	Additional object metadata	
Р	Placement Group metadata	
L	Deferred transactions	
В	Bitmap metadata	
b	Bitmaps	
Х	Shared blob information	

Pursuing	SEARCH oid	size xattrs flags extent map
	O[]o	onode + extent map
	O[]o[]x	extent map
	O[]o[]x	extent map
	M <oid>.<type></type></oid>	encoded data structure
	M <oid>.<type></type></oid>	encoded data structure

RBD and CephFS

RBD – RADOS Block Device

- Each RBD has a unique ID
- Object name rbd_data.<ID>.<Block>
 - Content of block device
 - Lazy allocation
- Object name rbd_header.<ID>
 - o Creation time
 - Features
 - o Size
 - Object prefix
 - o Lock

CephFS

- o Not BlueFS!
- Directories / files → one or more objects
 - Names of objects: <Inode>.<Chunk>
- O-row in KV store:
 - Complete path as extended attribute _parent
- M-row in KV store:
 - -: directory metadata (mtime, num. of files)
 - <filename>_head: metadata of file (inode, permission)
- Application category:
 - Object prefixes 100., 200., 300., 400., 500., 600.

- Vampyrotheutis Infernalis
- o https://github.com/fbausch/vampyr
 - Python 3, no Ceph libraries used
- o Vampyr can
 - Show data of the filesystem category
 - Reconstruct/extract BlueFS and load KV store
 - Decode and carve for osdmaps (topology info)
 - Decode object metadata / extract object contents

Citron / CC-BY-SA 3.0

- Objects that belong together can be joined
 - rbd_data objects: reconstruct (parts of) RBD
 - CephFS objects: reconstruct (parts of) files
- CephFS file names and directory names can be reconstructed

- o Vampyr can
 - Extract slack spaces
 - Combine objects of several OSDs
 - Determine unallocated areas of OSDs
 - o Extract unallocated areas
 - Determine which unallocated 512kB blocks are actually empty

- Training data
 - o Test setup
 - Database system (SAP HANA)

```
BlueStore Superblock Information:
Start at: 0x0
End at: 0x126
bluestore block device
1406c680-5d99-4406-a1e5-bf7aeca64b36
OSD UUID: 1406c680-5d99-4406-a1e5-bf7aeca64b36
OSD length: 0x2e8d931000 B = ~ 186 GiB
Last used at: 2018-03-07 14:00:34.148527627
Description: main
Metadata information:
- bluefs: 1
- ceph fsid: 585de5f3-bdc9-3160-8b5a-b72620af43e4
- kv backend: rocksdb
- magic: ceph osd volume v026
- mkfs done: yes
 ready: ready
- whoami: 12
CRC32 checksum: 0xdf2c722b
Volume slack starts at offset 0x2e93e31000 of image file
```

fbausch@vm901:~\$./vampyr.py --ldb rocksdb/build/tools/ldb --image /datengrab/be rn/bern.sda.img --offset 0x6500000 --lsobjects --objfilter "rbd.*" Object List: Prefix -> Object rbd data.2fee2ae8944a -> 00000000000010015 00000000001fff0 000000000000100, 00000000000019b, 00000000000001a2, 0000000000001e6, 000000000 0000200, 0000000000000284, 00000000000002b7, 00000000000002ea, 00000000000321, 0000000000000042b rbd data.30e52ae8944a -> 000000000000000e. 0000000000000051. 000000000000098. 0 00000000000000fe. 0000000000000166. 0000000000000189. 00000000000001b2. 000000000 00001d6, 000000000000000274, 00000000000002a3, 00000000000002ea, 00000000000033f, 00000000000003d3, 00000000000003e4, 00000000000003f6, 0000000000000405, 0000000 00000044e, 0000000000000049e, 0000000000004c4, 00000000000000<u>524, 000000000000052</u> f, 000000000000540, 0000000000002031

Key: shard: 0x-1, ns: , key: 10000000010.00000000, name: 10000000010.00000000, p oolid: 0x4, snap: 0xfffffffffffffff, gen: 0xffffffffffffffff Value:

oid: 12338, object_size: 1082325, shards:

_: size: 0x1083d5, mtime: 2018-08-06 16:49:11.501443970, soid: key: , o id: 10000000010.00000000, nspace: , pool: 0x4

snapset: snapid: 0x1, snaps: Number of elements: 0 (0x0), clones: Number of e
lements: 0 (0x0)

_layout: objectsize: 0x400000, poolid: <u>0x4, pool_ns:</u>

__parent: inode: 0x10000000010 -> ancestors: ino: 0x10000000002, dname: kap-ag ulhas_20236318375_o.jpg, ver: 0x5e->ino: 0x10000000001, dname: southafrica, ver: 0x61->ino: 0x10000000000, dname: images, ver: 0x3b->ino: 0x1, dname: test_files , ver: 0x36, pool: 0x4

Filename: kap-agulhas_20236318375_o.jpg

Fullpath: <CephFSroot>/test_files/images/southafrica/kap-agulhas_20236318375_o.j
pg

Own inode: 0x1000000010

Logical extents:

Logical offset: 0x0, length: 0x80000, Physical extents: 0x3400000-0x80000 Logical offset: 0x80000, length: 0x80000, Physical extents: 0x3480000-0x80000 Logical offset: 0x100000, length: 0x83d5, Physical extents: 0x3500000-0x10000

Conclusion and Outlook

Conclusion and Outlook

- Documentation of data structures
- Categorization
- o Vampyr

Conclusion and Outlook

- Future work
 - o SeaStore
 - Successor of BlueStore
 - Under development
 - WAL + DB devices
 - CephFS journal
 - RGW, librados
 - Compression
 - o Checksums

Thank you for you attention

fbausch@ernw.de

dWeAreTroopers

www.ernw.de

www.insinuator.net

