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Brief Bio
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Take-home message:
Transformers can model (and understand) system logs!



Roadmap

• Malware detection with machine learning

• Main advances in AI that lead to GPT success

• Behavior malware modeling with Transformers

• Preliminary Results and Explainability
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(Static) Malware Classification with ML Models
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Static features
(import, exports, 

sections…)

Supervised ML

p(malicious) 
= 0.951

Malicious Benign
Human or 

“greedy” labels:
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[*] Anderson, H. S., & Roth, P. (2018). EMBER: An Open Dataset 
for Training Static PE Malware Machine Learning Models. 
https://doi.org/10.48550/arXiv.1804.04637

(Static) Malware Classification with ML Models
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Limitations of Static Analysis

Meaningful but not complete
PE structure is informative, but it provides limited information on 
the real functionality of the analysed sample (and there are plenty 
of ways to execute code not contained in PE files)

Why is it malicious?
Extracted features are not human-readable (think about 
histograms), decisions are difficult to explain

Easy to restructure at will
Plenty of tools for packing and obfuscating to avoid detection 
(also, someone said minimal adversarial attacks?)



PE
Power-

Shell

Windows OS Linux OS

VBScript ...

Living-off-The-Land

ELF ...Python

System Logs

AV/EDR 
vendors
& DFIR only

Detection Engineering
SOC, SIEM
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[*] https://github.com/mitre-attack/attack-datasources Troopers DE, June 2023 D. Trizna, L. Demetrio

We lack proper datasets in OS logging 
space (sysmon, auditd)

.. but we have labeled malware that 
can act as a proxy task.

https://github.com/mitre-attack/attack-datasources
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Dynamic analysis on the rescue

Chain of events
Run program inside protected isolated environment, take note of 
every observable action of the program

Human-readable reports
The analysis outputs a textual report that specifies the timeline of 
all the triggered events

Circumventing obfuscation
Even if samples are packed or obfuscated, at some point the 
functionality will be manifested through interactions with the 
underlying OS

TrustMe.exe

VM

open file A

encrypt A

connect to X



Behavioral Properties

Sandbox

Emulator
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Emulation at its core
Speakeasy is a great product from Mandiant 
with ongoing R&D

Cheap, fast, and precise
Emulation is fast thanks to Unicorn and QEMU, 
that leverage native implementations.
Also, results are very close to real execution, 
with low error rate

Speakeasy Dataset

Perfect tool for creating a dataset of behavioral traces!
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Our data – behavior reports of:
~70k malware samples over 7 malware types
~25k clean samples
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https://www.kaggle.com/datasets/dmitrijstrizna/quo-

vadis-malware-emulation

https://www.kaggle.com/datasets/dmitrijstrizna/quo-vadis-malware-emulation
https://www.kaggle.com/datasets/dmitrijstrizna/quo-vadis-malware-emulation


How data looks like with Speakeasy

[*] https://github.com/mandiant/speakeasyTroopers DE, June 2023 D. Trizna, L. Demetrio



Complex “language” to learn

Tight structure, many “words”, mixing data 
types like strings, int, and pointers

Data is still noisy

Activities can be numerous, and real 
behavior is hidden among them

Not everything is necessary
Plenty of “words” that are not really useful 
to machine learning models
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Human readable != Easy to model



Does progress in AI 
provide techniques for cyber-
security telemetry modeling?
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Let me tell you
a story of 

how GPT works…
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Neural Network Architectures
AI advancement Nr.1:
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1997: LSTM
(Hochreiter and Schmidhuber)

2010-2017: 
CNNs and RNNs dominate AI

AI in 2010s: 
Convolutional NNs and Recurrent NNs

1989
(LeCun et al.)
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2017: Google
“Attention is All You Need”

AI 2020s: 
Attention and Transformers
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Releases “Transformer” model



Self-Supervised
Language Modeling

AI advancement Nr.2:
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Jun 2018: GPT (OpenAI)

Oct 2018: BERT (Google)

GPT-like – Autoregressive

• Predict what comes next based on context:

BERT-like – Masked Language Model (MLM)

• Predict what tokens are masked:

[img source] https://amitness.com/2020/05/self-supervised-
learning-nlp/ Troopers DE, June 2023 D. Trizna, L. Demetrio

https://amitness.com/2020/05/self-supervised-learning-nlp/
https://amitness.com/2020/05/self-supervised-learning-nlp/


Unlabeled corpus: 
books, wiki, reddit
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Pre-Training 

via

Self-supervised 

learning

Fine-Tuning 

via

Supervised learning

Labeled data:
- Question-Answering
- User recommendations
- Malware & benign-ware
- …

Application,
e.g. 
p(malware) = ?



AI 2020s: 
Attention and Transformers 2018-2023: 

Scaling up + 
Engineering
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How this applies to security?
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Behavioral Log Modeling with Transformer
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Data Cleaning – Filters

Too many fields:
1. lengthy sequences – too much data for model
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Data Cleaning – Filters

Too many fields:
1. lengthy sequences – too much data for model
2. non-essential values – irrelevant for task (overfitting)
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Data Cleaning – Filters

Too many fields:
1. lengthy sequences – too much data for model
2. non-essential values – irrelevant for task (overfitting)

We preserve only:
● API calls
● File access
● Network events
● Registry access
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Data cleaning – Normalization

"<drive>\windows\system32\<sha256>.dat"
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Behavioral Log Modeling with Transformer

D. Trizna, L. Demetrio



Troopers DE, June 2023 D. Trizna, L. Demetrio

Tokenization & Encoding

Input text is first split into pieces. Can be characters, word, "tokens":

"The detective investigated" -> [The_] [detective_] [invest] [igat] [ed_]

Tokens are indices into the "vocabulary":

[The_] [detective_] [invest] [igat] [ed_] -> [3 721 68 1337 42]

Each vocab entry corresponds to a learned multi-dimensional vector.

[3 721 68 1337 42] -> [ [0.123, -5.234, ...], [...], [...], [...], [...] ]

[img source] https://ai.googleblog.com/2016/12/open-sourcing-embedding-

projector-tool.html 

https://ai.googleblog.com/2016/12/open-sourcing-embedding-projector-tool.html
https://ai.googleblog.com/2016/12/open-sourcing-embedding-projector-tool.html
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Tokenization & Encoding

Whitespace tokens:

Byte-Pair Encoding (BPE) 

tokens:
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Behavioral Log Modeling with Transformer

D. Trizna, L. Demetrio



Troopers DE, June 2023 D. Trizna, L. Demetrio

Evaluation – How Well
Self-Supervised Pre-Training Works?

1. Choose large part of training dataset 
to act as unsupervised corpus

Self-supervised 

pre-training

Test data

Training Data

2. Pre-train model using 
Masked Language Model (MLM)

Jan 2022
~70k samples

Apr 2022
25k samples



Which tokens 
are masked?

Masked Language Modeling (MLM)
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1. Choose large part of training dataset 
to act as unsupervised corpus

Supervised 

fine-tuning

Self-supervised 

pre-training

Test data

Training Data

2. Pre-train model using 
Masked Language Model (MLM)

3. Fine-tune model on small supervised 
dataset

4. Evaluate how well it performs on test data 
compared to model with no pre-training

Evaluation – How Well
Self-Supervised Pre-Training Works?
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Preliminary results on pre-training:

The way to utilize Tera-Bytes of 
unlabeled system logs!?
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Comparison with Existing Techniques:



Explainability (1/3): 
Transformer Attention Show What It Learns
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Explainability (2/3): 
Explanation Consistent Between Various Techniques

SHapley Additive exPlanations (SHAP)
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Explainability (3/3): 
Can Yield Indicators-of-Compromise (IoC) ?



Summary

• Realistic exploitation detection considers wide 
scope of attack vectors through log analysis

• Industry lacks efficient AI modeling of this data

• Transformer architectures rivals Convolutional Neural Networks in 
this domain:
• Global vs Local semantics

• Unsupervised pre-training in this domain has huge potential
• Now: Security industry relies on manual / supervised methods
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Thank you for your attention!
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