
Jupysec: Auditing Jupyter to Improve AI
Security

Joe Lucas
NVIDIA AI Red Team
Jupyter Security Council

Agenda
What is AI Security?
How does Jupyter fit in?
What are we defending against?
Why is security hard?
What's the working solution?

Machine Learning Operations and AI Security
Methodology

Did you mean Jupiter?
Julia, Python, and R
Notebooks, but more than notebooks

Client/server architecture for running kernels

architecture

Hello World

('/Users/x26393/Library/Jupyter/runtime/kernel-bab546e8-93aa-4964-990d-a75f2b42
9fb6.json',
 {'shell_port': 49910,
 'iopub_port': 49911,
 'stdin_port': 49912,
 'control_port': 49914,
 'hb_port': 49913,
 'ip': '127.0.0.1',
 'key': '2c800523-5bb32c965f3db898dc0e5f9a',
 'transport': 'tcp',
 'signature_scheme': 'hmac-sha256',
 'kernel_name': 'python3',
 'jupyter_session': '/Users/x26393/troopers/Presentation.ipynb'})

But this base architecture model is encapsulated in several different applications:

Jupyter Notebooks
JupyterLab
JupyterHub

The Cloud
AWS SageMaker
Azure Machine Learning Studio
Google Collab

And various wrappers on these

Kaggle
NVIDIA NGC

Configuration
Misconfiguration was responsible for 21% of error-related breaches in 2022. Verizon
DBIR

And since the jupyter ecosystem is so nicely decoupled, the configuration space and
complexity is large.

JupyterHub Config

In [1]: print("Hello World")

In [2]: from scripts.kernel import get_kernel
get_kernel()

Out[2]:

https://www.verizon.com/business/resources/reports/dbir/2023/incident-classification-patterns-intro/miscellaneous-errors/

What are we defending against?

Runtime injection

's3://evil_bucket'

In [3]: bucket = "s3://good_bucket"

In [5]: bucket

Out[5]:

In [6]: import torch
from torchvision import transforms
from torchvision.datasets import MNIST
import matplotlib.pyplot as plt

In [7]: train_data = MNIST('../mnist_data', download=True, train=True,
 transform=transforms.Compose([
 transforms.ToTensor(),
 transforms.Normalize((0.1307,), (0.3081,))]))

In [8]: def visualize(datapoint):
 plt.title(f"This is a {datapoint[1]}")
 plt.imshow(datapoint[0].reshape((28, 28)))
 plt.show()

In [10]: for i in range(3):
 visualize(train_data[i])

Startup Execution

In [11]: import docker
import time

Start a docker image running jupyterlab

ExecResult(exit_code=0, output=b'Currently running servers:\nhttp://2ea1020ec17
a:8888/?token=7cca9b685741617e570fd9ad1a72ba04d773b74c190b89a6 :: /home/joe_shm
oe\n')

Audit
So Jupyter is powerful and flexible. How do we audit our instances' security?

Security of our configuration decisions
Verify that our running config is what we intended

The problem: Given a running instance, how do we assess its security posture?

Config files: necessary, but not sufficient

jupysec

Conclusion
If you're running some flavor of Jupyter:

1. How can you tell that you're following "best practices"?
2. How can you tell that your running instance is configured the way you thought it

was?

How do we set reasonable security expectations with minimal impact to velocity
(especially early in R&D)?

Extra
If you like this, check out our BlackHat USA training (potentially coming to BlackHat EU
too)

client = docker.from_env()
client.containers.run(image="jlab:latest", ports={'8888': 5000}, detach=True)

Let the application start
time.sleep(5)

Get the token from inside the container
(client.containers.list(filters={"status": "running"})[0]
 .exec_run('/home/joe_shmoe/.local/bin/jupyter server list'))

Out[11]:

In []:

