() TROOPERS

Quuarkslab

Vulnerabilities in the TPM 2.0 Reference

Implementation Code
Troopers 2023

Francisco Falcon / @fdfalcon

https://www.quarkslab.com/

Q Introduction

Whoami

® I'm Francisco Falcon, from Argentina.

® Reverse engineer, security researcher at Quarkslab since 2016.

® Formerly: Exploit writer at Core Security.

® Interested in the usual low-level stuff: reverse engineering, vulnerability research,

exploitation...

® @fdfalcon on

2/129

Q Introduction

Motivation

Why doing security research on TPMs?

1. Virtualized TPMs offer a little explored path for VM escape on virtualization software.

This is also true for cloud environments!

3/129

Q Introduction

Motivation

Why doing security research on TPMs?

1. Virtualized TPMs offer a little explored path for VM escape on virtualization software.
This is also true for cloud environments!

2. TPM firmware runs on a separate processor — whatever happens there, it's not observable

from the main CPU. If you get RCE on it, it may be hard to detect.

4/129

Q Introduction

Motivation

Why doing security research on TPMs?

1. Virtualized TPMs offer a little explored path for VM escape on virtualization software.
This is also true for cloud environments!

2. TPM firmware runs on a separate processor — whatever happens there, it's not observable
from the main CPU. If you get RCE on it, it may be hard to detect.

3. The underlying protocol is complex, and the code parsing it is written in C.

5/129

Introduction

4 . Widely adopted reference implementation — a vuln in the reference implementation

code ends up affecting everyone.

DISCOVERING A
VULN IN SOME
VENDOR'S CODE

DISCOVERING A
VULN IN THE
REFERENCE

IMPLEMENTATION

6/129

Q Introduction

Agenda

1. TPM basics

2. Virtual TPMs

3. TPM 2.0 protocol internals

4. Vulnerabilities: CVE-2023-1017 and CVE-2023-1018
5. Disclosure details

6. Conclusions

71129

Part 1
TPM Basics

Q 1. TPM Basics

Trusted Platform Module (TPM)

A standard secure crypto-processor designed to perform cryptographic operations:

® Generation and storage of cryptographic keys

9/129

Q 1. TPM Basics

Trusted Platform Module (TPM)

A standard secure crypto-processor designed to perform cryptographic operations:

® Generation and storage of cryptographic keys

® Symmetric and asymmetric encryption/decryption

10/129

Q 1. TPM Basics

Trusted Platform Module (TPM)

A standard secure crypto-processor designed to perform cryptographic operations:

® Generation and storage of cryptographic keys
® Symmetric and asymmetric encryption/decryption

® Digital signatures generation/verification

11129

Q 1. TPM Basics

Trusted Platform Module (TPM)

A standard secure crypto-processor designed to perform cryptographic operations:

® Generation and storage of cryptographic keys
® Symmetric and asymmetric encryption/decryption
® Digital signatures generation/verification

® Random number generation

12/129

Q 1. TPM Basics

Trusted Platform Module (TPM)

Typical use cases:

® Attestation of the boot process integrity

13/129

Q 1. TPM Basics

Trusted Platform Module (TPM)

Typical use cases:

® Attestation of the boot process integrity

® Storage of disk encryption keys (e.g Bitlocker)

14/129

Q 1. TPM Basics

Trusted Platform Module (TPM)

Typical use cases:

® Attestation of the boot process integrity
® Storage of disk encryption keys (e.g Bitlocker)

® Digital rights management

15/129

Q 1. TPM Basics

TPM Flavors

® Integrated TPMs

Dedicated hardware integrated into one or more semiconductor packages alongside, but logically
separate from, other components.

16/129

Q 1. TPM Basics

TPM Flavors

® Integrated TPMs

Dedicated hardware integrated into one or more semiconductor packages alongside, but logically
separate from, other components.

® Discrete TPMs

Separate component in its own semiconductor package.

17/129

Q 1. TPM Basics

TPM Flavors

® Integrated TPMs

Dedicated hardware integrated into one or more semiconductor packages alongside, but logically
separate from, other components.

® Discrete TPMs

Separate component in its own semiconductor package.
® Virtual TPMs

VMware, Hyper-V, Parallels Desktop, QEMU, VirtualBox...

18/129

Q 1. TPM Basics

TPM Flavors

® Integrated TPMs
Dedicated hardware integrated into one or more semiconductor packages alongside, but logically
separate from, other components.
® Discrete TPMs
Separate component in its own semiconductor package.
® Virtual TPMs
VMware, Hyper-V, Parallels Desktop, QEMU, VirtualBox...
® Firmware-based TPMs

Run the TPM in firmware in a Trusted Execution mode of a general purpose computation unit.

Intel Platform Trust Technology (PTT)
Based on Intel Converged Security & Management Engine (CSME), runs in the Platform Controller Hub (PCH)

AMD fTPM

19/129

Q 1. TPM Basics

TPMs on the Cloud

All the major cloud computing providers offer instances with virtual TPMs:

20/129

Q 1. TPM Basics

TPMs on the Cloud

All the major cloud computing providers offer instances with virtual TPMs:

® Amazon AWS has NitroTPM

21129

Q 1. TPM Basics

TPMs on the Cloud

All the major cloud computing providers offer instances with virtual TPMs:

® Amazon AWS has NitroTPM
® Microsoft Azure provides virtual TPMs as part of Trusted Launch

22/129

Q 1. TPM Basics

TPMs on the Cloud

All the major cloud computing providers offer instances with virtual TPMs:

® Amazon AWS has NitroTPM

® Microsoft Azure provides virtual TPMs as part of Trusted Launch
® Google Cloud offers virtual TPMs as part of Shielded VMs

23129

Q 1. TPM Basics

TPMs on the Cloud

All the major cloud computing providers offer instances with virtual TPMs:

® Amazon AWS has NitroTPM

® Microsoft Azure provides virtual TPMs as part of Trusted Launch
® Google Cloud offers virtual TPMs as part of Shielded VMs

® Oracle Cloud Infrastructure provides virtual TPMs as part of Shielded Instances

24129

Part 1.2

The TPM 2.0 Reference Implementation

1.2 The TPM 2.0 Reference Implementation

TPM 2.0 Reference Implementation

® The TPM standard is published and maintained by the Trusted Computing Group (TCG), a

nonprofit organization.

They publish the reference implementation code for the firmware of TPMs
Adopted by (almost?) all vendors: hardware/firmware/virtual/cloud TPMs...

® Old standard: TPM 1.2

Only allows for the use of RSA for key generation
Only allows for the use of SHA1 as hashing function
Deprecated

® Current standard: TPM 2.0

26/129

1.2 The TPM 2.0 Reference Implementation

TPM 2.0 Reference Implementation

® Latest version: Trusted Platform Module Library Specification, Family "2.0", Level 00, Revision
01.59 — November 2019

® 6 PDF documents, accounting for 2568 pages:

Part 1: Architecture (306 pages)

Part 2: Structures (177 pages)

Part 3: Commands (432 pages)

Part 3: Commands - Code (498 pages)

Part 4. Supporting Routines (146 pages)

Part 4. Supporting Routines - Code (1009 pages)

27129

1.2 The TPM 2.0 Reference Implementation

® C code is embedded in the PDF documents

(no TCG source code repository)

Intertwined with descriptions, section names,
line numbers, tables...

Microsoft extracts the code from the PDF files
and keeps a repository on Github

IBM keeps a repository on Sourceforge

=Wl

12.5.3 Detailed Actions

#include "Tpm.h"

#include "ActivateCredential fp.h"

#if CC_ActivateCredential // Conditional expansion of this file
#include "Object spt fp.h"

Error Returns Meaning
TPM_RC_ATTRIBUTES keyHandle does not reference a decryption key
TPM_RC_ECC_POINT secret is invalid (when keyHandle is an ECC key)
TPM_RC_INSUFFICIENT secret is invalid (when keyHandle is an ECC key)
TPM_RC_INTEGRITY credentialBlob fails integrity test
TPM_RC_NO_RESULT secret is invalid (when keyHandle is an ECC key)
TPM_RC_SIZE secret size is invalid or the credentia/lBlob does not unmarshal
correctly
TPM_RC_TYPE keyHandle does not reference an asymmetric key
TPM_RC_VALUE secret is invalid (when keyHandle is an RSA key)
TEM_RC
TPM2 ActivateCredential (
ActivateCredential In *in, // IN: input parameter list
ActivateCredential Out *out // OUT: ocutput parameter list
)
{
TPM_RC result = TPM RC SUCCESS;
OBJECT *object ; // decrypt key
OBJECT *activateObject; // key associated with credential
TPM2B_DATA data; // credential data

// Input Validation

// Get decrypt key pointer
object = HandleToObject (in->keyHandle) ;

// Gat certificated cbject pointar
activateObject = HandleToObject (in->activateHandle) ;

28/129

1.2 The TPM 2.0 Reference Implementation

Is the generator for the TPM sources available?
sharadhr opened this issue on Aug 6, 2022 - 6 comments “Lvn[

bradlitterell commented on Aug 6, 2022 Contributor = =+

Sorry, at the current time, those tools are not available publicly.

@ sharadhr commented on Aug 6, 2022 « edited ~ wes As
Ne @ f‘ bradlitterell closed this as completed on Aug 6, 2022
The TPM sources used by all the samples, and especially the simulator in TPMCmd,
have these telltale lines:
La DemiMarie commented on Feb 6 Contributor = *=*
/*(Auto-generated) N¢ } ’ ?
+ Created by TpmStructures; Version 4.4 Mar 26, 2019 Are there any plans to make the tool publicly available?
* Date: Mar 6, 2020 Time: ©1:50:09PM p
*/ r
N¢
A% bradlitterell commented on Feb 7 Contributor =~ <+=-
_
Is the source for this Tpmstructures script/binary available? | presume based on this M
discussion that the generator parses the TPM 2.0 specification itself to generate code. Ne Not currently, no. Sorry.

0 DemiMarie commented on Feb 7 Contributor =~ *=*

Not currently, no. Sorry.

Understood. Can you provide the reason, or is that also confidential?

https://github.com/microsoft/ms-tpm-20-ref/issues/79 29/129

1.2 The TPM 2.0 Reference Implementation

® User space tools such as tpm2-tools abstract the underlying complexity.

30/129

1.2 The TPM 2.0 Reference Implementation

® User space tools such as tpm2-tools abstract the underlying complexity.

® Let's consider the Tpv2 startauthsession command defined in the spec.

This command is used to start an authorization session using alternative methods of establishing the
session key (sessionKey). The session key is then used to derive values used for authorization and for
encrypting parameters.

31/129

1.2 The TPM 2.0 Reference Implementation

® User space tools such as tpm2-tools abstract the underlying complexity.

® Let's consider the Tpv2 startauthsession command defined in the spec.

This command is used to start an authorization session using alternative methods of establishing the
session key (sessionKey). The session key is then used to derive values used for authorization and for
encrypting parameters.

® You can start an auth session using tpm2-tools like this:

mknod "SHOME/backpipe" p
while [1]; do tpm2 send O<"SHOME/backpipe" | nc -1U "SHOME/sock" 1>"SHOME/backpipe"; done;

tpm2 startauthsession --tcti="cmd:nc -g 0 -U SHOME/sock" <options>

32/129

® But under the surface, the TPM 2.0 protocol is quite complex...

The entity referenced with the bind parameter contributes an authorization value to the sessionKey
generation process.

If both tpmKey and bind are TPM_RH_NULL, then sessionKey is set to the Empty Buffer. If tpmKey is not
TPM_RH_NULL, then encryptedSalt is used in the computation of sessionKey. If bind is not
TPM_RH_NULL, the authValue of bind is used in the sessionKey computation.

If symmetric specifies a block cipher, then TPM_ALG_CFB is the only allowed value for the mode field in
the symmetric parameter (TPM_RC_MODE).

This command starts an authorization session and returns the session handle along with an initial
nonceTPM in the response.

If the TPM does not have a free slot for an authorization session, it shall retum
TPM_RC_SESSION_HANDLES.

If the TPM implements a “gap” scheme for assigning contextlD values, then the TPM shall return
TPM_RC_CONTEXT_GAP if creating the session would prevent recycling of old saved contexts (See
“Context Management” in TPM 2.0 Part 1).

If tomKey is not TPM_ALG_NULL then encryptedSalt shall be a TPM2B_ENCRYPTED_SECRET of the
proper type for tomKey. The TPM shall return TPM_RC_HANDLE if the sensitive portion of tomKey is not
loaded. The TPM shall return TPM_RC_VALUE if:

a) tpmKey references an RSA key and
1) the size of encryptedSalt is not the same as the size of the public modulus of tomKey,
2) encryptedSalt has a value that is greater than the public modulus of ipmKey,
3) encryptedSalt is not a properly encoded OAEP value, or

4) the decrypted salf value is larger than the size of the digest produced by the nameAlg of tomKey,
or

b} tpmKey references an ECC key and encryptedSait
1) does not contain a TPMS_ECC_POINT or

2) is not a point on the curve of tomKey,

NOTE 4 When ECC is used, the point multiply process produces a value (Z) that is used in a KDF to
produce the final secret value. The size of the secret value is an input parameter to the KDF
and the result will be set to be the size of the digest produced by the nameAlg of tpmKey.

The TPM shall return TPM_RC_KEY if fpmkey does not reference an asymmetric key. The TPM shall
return TPM_RC_VALUE if the scheme of the key is not TPM_ALG_OAEP or TPM_ALG_NULL. The TPM
shall return TPM_RC_ATTRIBUTES if tpmKey does not have the decrypt attribute SET.

NOTE While TPM_RC_VALUE is preferred, TPM_RC_SCHEME is acceptable.
If bind references a transient object, then the TPM shall return TPM_RC_HANDLE if the sensitive portion
of the object is not loaded.

For all session types, this command will cause initialization of the sessionKey and may establish binding
between the session and an object (the bind object). If sessionType is TPM_SE_POLICY or
TPM_SE_TRIAL, the additional session initialization is:

« set policySession—policyDigest to a Zero Digest (the digest size for policySession—policyDigest is
the size of the digest produced by authHash);

« authorization may be given at any locality;

« authorization may apply to any command code;

« authorization may apply to any command parameters or handles;
» the authorization has no time limit;

s an authValue is not needed when the authorization is used:;

s the session is not bound;

« the session is not an audit session; and

« the time at which the policy session was created is recorded.

Additionally, if sessionType is TPM_SE_TRIAL, the session will not be usable for authorization but can be
used to compute the authPolicy for an object.

NOTE 5 Although this command changes the session allocation information in the TPM, it does not invalidate
a saved context. That is, TPM2_Shutdown() is not required after this command in order to re-
establish the orderly state of the TPM. This is because the created context will occupy an available
slot in the TPM and sessions in the TPM do not survive any TPM2_Startup(). However, if a created
session is context saved, the orderly state does change.

The TPM shall return TPM_RC_SIZE if nonceCaller is less than 16 octets or is greater than the size of
the digest produced by authHash.

1.2 The TPM 2.0 Reference Implementation

33/129

Part 2
Virtual TPMs

Q 2. Virtual TPMs

Windows 11 Requirements

® Processor: 1 GHz or faster with two or more cores on a compatible 64-bit processor or system
on a chip (SoC)

® Memory: 4 GB or greater.

® Storage: 64 GB or greater available disk space.

® Graphics card: Compatible with DirectX 12 or later, with a WDDM 2.0 driver.

® System firmware: UEFI, Secure Boot capable.

® TPM: Trusted Platform Module (TPM) version 2.0.

35/129

Q 2. Virtual TPMs

Virtual TPMs

® Nowadays, every desktop virtualization solution provides a virtual TPM.
® Implemented as an additional process running in the host system.
® The way of sending TPM commands from the guest system to the TPM process on the host

(and the other way around) is up to each implementation

36/129

Q 2. Virtual TPMs

Virtual TPMs

® Nowadays, every desktop virtualization solution provides a virtual TPM.
® Implemented as an additional process running in the host system.
® The way of sending TPM commands from the guest system to the TPM process on the host

(and the other way around) is up to each implementation

VMware Workstation uses two pipes: one for reading, one for writing

37/129

Q 2. Virtual TPMs

Virtual TPMs

® Nowadays, every desktop virtualization solution provides a virtual TPM.
® Implemented as an additional process running in the host system.
® The way of sending TPM commands from the guest system to the TPM process on the host

(and the other way around) is up to each implementation

VMware Workstation uses two pipes: one for reading, one for writing
Microsoft Hyper-V uses RPC

38/129

Q 2. Virtual TPMs

Virtual TPMs

® Nowadays, every desktop virtualization solution provides a virtual TPM.
® Implemented as an additional process running in the host system.
® The way of sending TPM commands from the guest system to the TPM process on the host

(and the other way around) is up to each implementation
VMware Workstation uses two pipes: one for reading, one for writing
Microsoft Hyper-V uses RPC
SWTPM (QEMU) uses a TCP socket

39/129

Q 2. Virtual TPMs

Virtual TPMs

® Virtual TPMs allow us to easily (well, except for Hyper-V) debug TPM firmware.
® On the other hand, they expose additional attack surface, that in a worst case scenario could

allow to escape from the VM to the host side.

40/129

Q 2. Virtual TPMs

Hyper-V's virtual TPM

® Hyper-V's virtual TPM runs as an Isolated User Mode (IUM) process, also known as a Trustlet.

vmsp . exe (Virtual Machine Secure Process), which hosts TpmeEngum. dil.

41129

Q 2. Virtual TPMs

Hyper-V's virtual TPM

® Hyper-V's virtual TPM runs as an Isolated User Mode (IUM) process, also known as a Trustlet.

vmsp . exe (Virtual Machine Secure Process), which hosts TpmeEngum. dil.

® Leverages Virtual Secure Mode (VSM), which creates a set of modes called Virtual Trust Levels
(VTLs):
VTLO: traditional model of Kernel mode and User mode code running in CPU ring O and ring 3,

respectively.
VTL1: higher privileged mode, where the Secure Kernel and Isolated User Mode run.

42/129

Q 2. Virtual TPMs

Hyper-V's virtual TPM

® Hyper-V's virtual TPM runs as an Isolated User Mode (IUM) process, also known as a Trustlet.

vmsp . exe (Virtual Machine Secure Process), which hosts TpmeEngum. dil.

® Leverages Virtual Secure Mode (VSM), which creates a set of modes called Virtual Trust Levels
(VTLs):
VTLO: traditional model of Kernel mode and User mode code running in CPU ring O and ring 3,

respectively.
VTL1: higher privileged mode, where the Secure Kernel and Isolated User Mode run.

@ It is not possible to attach to an IUM process, inhibiting the ability to debug VTL1 code (well,

almost).

43/129

Q 2. Virtual TPMs

Isolated User Mode process

VSM Normal Mode (VTLO)

V5M Secure Mode (VTL1)

1
1
1
1
1
1
]
i
]
]
i
i Isolated User Mode (IUM)

User Mode i Trustlet UE,_EI‘ Mode

{Ring 3) LSAS5 exe i e otated (Ring 3)
i LSAIS0, exe

SN SR NE— - e S —— - e e
LSASS ‘ LSAISD ! LSAISD Secure
:::Fﬂﬂé;'ﬂﬂde Kernel Data Kernel Data i Kernel Data Kernel Mode
in .
£ i | Secure Kernel (Ring 0)

Hyper-V Hypervisor

https://learn.microsoft.com/en-us/windows/win32/procthread/isolated-user-mode--ium--processes ,,/1oq

Q 2. Virtual TPMs

Debugging Hyper-V's virtual TPM

® By preparing a nested virtualization environment, it is possible to debug Hyper-V's virtual TPM

trustlet.
Described in the First Steps in Hyper-VV Research blog post by Saar Amar.

45/129

https://msrc.microsoft.com/blog/2018/12/first-steps-in-hyper-v-research/

Q 2. Virtual TPMs

Debugging Hyper-V's virtual TPM

® By preparing a nested virtualization environment, it is possible to debug Hyper-V's virtual TPM

trustlet.
Described in the First Steps in Hyper-VV Research blog post by Saar Amar.

® 1. We create a Windows VM (Level 1), and in the guest system we install Hyper-V.

46/129

https://msrc.microsoft.com/blog/2018/12/first-steps-in-hyper-v-research/

Q 2. Virtual TPMs

Debugging Hyper-V's virtual TPM

® By preparing a nested virtualization environment, it is possible to debug Hyper-V's virtual TPM

trustlet.
Described in the First Steps in Hyper-VV Research blog post by Saar Amar.

® 1. We create a Windows VM (Level 1), and in the guest system we install Hyper-V.
® 2 . We launch Hyper-V in our guest system, and we use it to create a nested VM (Level 2). This
nested VM will have a virtual TPM.

47129

https://msrc.microsoft.com/blog/2018/12/first-steps-in-hyper-v-research/

Q 2. Virtual TPMs

Debugging Hyper-V's virtual TPM

® By preparing a nested virtualization environment, it is possible to debug Hyper-V's virtual TPM

trustlet.
Described in the First Steps in Hyper-VV Research blog post by Saar Amar.

® 1. We create a Windows VM (Level 1), and in the guest system we install Hyper-V.

® 2 . We launch Hyper-V in our guest system, and we use it to create a nested VM (Level 2). This
nested VM will have a virtual TPM.

® 3 . We enable hypervisor debugging in the Level TVM, and we attach to it.

48/129

https://msrc.microsoft.com/blog/2018/12/first-steps-in-hyper-v-research/

Q 2. Virtual TPMs

Debugging Hyper-V's virtual TPM

® By preparing a nested virtualization environment, it is possible to debug Hyper-V's virtual TPM

trustlet.
Described in the First Steps in Hyper-VV Research blog post by Saar Amar.

® 1. We create a Windows VM (Level 1), and in the guest system we install Hyper-V.

® 2 . We launch Hyper-V in our guest system, and we use it to create a nested VM (Level 2). This
nested VM will have a virtual TPM.

® 3 . We enable hypervisor debugging in the Level TVM, and we attach to it.

® 4 . When debugging the hypervisor (hvix64.exe), we put a breakpoint on the handler of the

HvCallvtlreturn hypercall (used to switch from VTL1to VTLO).

49/129

https://msrc.microsoft.com/blog/2018/12/first-steps-in-hyper-v-research/

Q 2. Virtual TPMs

Debugging Hyper-V's virtual TPM

® 5. When the breakpoint is hit, we retrieve a pointer to some Hyper-V structures.

50/129

Q 2. Virtual TPMs

Debugging Hyper-V's virtual TPM

® 5. When the breakpoint is hit, we retrieve a pointer to some Hyper-V structures.

® 6 . From those structures, we retrieve the instruction pointer from where the svcallvtireturn
hypercall was performed. This virtual address belongs to securekernel.exe (Which runs at Ring
O in VTL1).

51/129

Q 2. Virtual TPMs

Debugging Hyper-V's virtual TPM

® 5. When the breakpoint is hit, we retrieve a pointer to some Hyper-V structures.
® 6 . From those structures, we retrieve the instruction pointer from where the svcallvtireturn
hypercall was performed. This virtual address belongs to securekernel.exe (Which runs at Ring

0 in VTLY).

® / . By subtracting a delta, we obtain the base virtual address of securekernel .exe.

52/129

Q 2. Virtual TPMs

Debugging Hyper-V's virtual TPM

® 5. When the breakpoint is hit, we retrieve a pointer to some Hyper-V structures.

® 6 . From those structures, we retrieve the instruction pointer from where the svcallvtireturn
hypercall was performed. This virtual address belongs to securekernel.exe (Which runs at Ring
O in VTL1).

® / . By subtracting a delta, we obtain the base virtual address of securekernel .exe.

® 8. We perform a page table walk to transform that base virtual address into the base physical

address of securekernel . exe.

53/129

Q 2. Virtual TPMs

Debugging Hyper-V's virtual TPM

® 5. When the breakpoint is hit, we retrieve a pointer to some Hyper-V structures.

® 6 . From those structures, we retrieve the instruction pointer from where the svcallvtireturn
hypercall was performed. This virtual address belongs to securekernel.exe (Which runs at Ring
O in VTL1).

® / . By subtracting a delta, we obtain the base virtual address of securekernel .exe.

® 8. We perform a page table walk to transform that base virtual address into the base physical
address of securekernel .exe.

® 9 . We patch kernelbase!skpsIisProcessbebuggingEnabled in physical memory so that it always

returns TrUE, which finally allows to debug IUM processes.

54/129

Part 3
TPM 2.0 protocol internals

Part 3.1

Commands and Responses

3.1 - Commands and Responses

Architecture
tpm2-tools o
- Application
TSS Library
A
/dev/tpmrm0 /dev/tpm0 User space
\??\TPM

TPM Driver 1

A

I/0

Kernel space

TPM

Main CPU

Secure environment

57/129

3.1 - Commands and Responses

0 1 2 3 TPM Base Command Header

tag

size

typedef UINT32 TPM CC;
commandCode [...]

58/129

3.1 - Commands and Responses

0 1 2 3 .
TPM Command with Handles
tag
® Command-dependent
size ® O to 3 handles
commandCode typedef TPM_HANDLE TPM_RH;

handle1

handle2 : :

handle3

59/129

tag

size

commandCode

handle3

authorizationSize

authorizationArea

3.1 - Commands and Responses

TPM Command with Authorization
Area

® Authorization area contains 1to 3 session
structures.

Also called Session Area in the reference
implementation code.

@® Authorization area is only present if the tag of

the command is TpM ST SESSTONS

60/129

3.1 - Commands and Responses

0 1 2 3
. TPM Command with Parameters
size
® Parameter contents are command-dependent.
commandCode
S— : ® Parameters are only present if the tag of the
E handle1 ;
S command is TPM ST SESSTIONS
: handle2 !
handle3
authorizationSize
authorizationArea
paramSize
parameters

61/129

3.1 - Commands and Responses

0 1 2 3 TPM Basic Response
tag ® csponseCode == 0 — indicates success
® csponseCode = 0 — indicates error
responseSize .
condition

responseCode

62/129

Q 3.1 - Commands and Responses

0 1 2 3
. TPM Response with Fields
responseSize
® Response may contain handles
responseCode
S —— 1 ® Response may contain parameters
: handle1 ;
S ® Response may contain authorization area
E handle2 ;
L It's all command-dependent
’ handle3 ’
el ® Notice the inverted order between
parameters authorization and parameters areas
authorizationSize
authorizationArea

63/129

Part 3.2

Authorization Area

3.2 - Authorization Area

Authorization Area

0 1 2 3 ® Session attributes:
sessionHandle 4 bytes
nonceSize 2 bytes typedef struct TPMA SESSION {
I A UINT8 continueSession : 1;
: nonce i <nonceSize> bytes UINT8 auditExclusive : 1,'
S ' UINT8 auditReset : 1;
; UINT8 reserved3 4 : 2;
session o e — ’
UINT8 encrypt : 1;
authSize 2 bytes UINT8 audit : 1;
STt N } TPMA_SESSION;
: authorization 5 <authSize> bytes

® Authorization: either HMAC or password

65/129

Smallest Authorization Area

0 1 2 3

sessionHandle
nonceSize=0

session
Attrs

authSize =0

4 bytes
2 bytes
<no nonce>

1 byte, bit field

2 bytes

<no authorization>

3.2 - Authorization Area

® NO nonce, NO authorization

® Total size: 9 bytes

66/129

Part 4
Vulnerabilities: CVE-2023-1017 and CVE-2023-1018

Part 4.1
Bug #1- OOB read in CryptParameterDecryption function (CVE-2023-1018)

4. CVE-2023-1017 and CVE-2023-1018

ExecCommand.c

LIB EXPORT void

ExecuteCommand (

unsigned int requestSize,

unsigned char *request,

unsigned int *responseSize,

unsigned char **response

)
[...]
result = UINT32 Unmarshal (&authorizationSize, &buffer, &size);
if (result != TPM RC SUCCESS)

goto Cleanup;

NOTE :

[1] if (authorizationSize < 9
| | authorizationSize > (UINT32) size)

{
result = TPM RC_ SIZE;

goto Cleanup;

69/129

4. CVE-2023-1017 and CVE-2023-1018

sessionBufferStart = buffer;

[2] parmBufferStart = sessionBufferStart + authorizationSize;
[3] parmBufferSize = size - authorizationSize;
[4] result = ParseSessionBuffer (commandCode,

handleNum,

handles,

sessionBufferStart,

authorizationSize,
[5] parmBufferStart,
[0] parmBufferSize) ;

70/129

4. CVE-2023-1017 and CVE-2023-1018

SessionProcess.c

TPM RC
ParseSessionBuffer (
TPM CC commandCode,
UINT32 handleNum,
TPM HANDLE handles|[],
BYTE *sessionBufferStart,
UINT32 sessionBufferSize,
BYTE *parmBufferStart,
UINT32 parmBufferSize
)
{
[...]
[1] if (s decryptSessionIndex != UNDEFINED INDEX) {
[...]
size = DecryptSize (commandCode) ;
[2] result = CryptParameterDecryption (
s _sessionHandles[s decryptSessionIndex],
&s nonceCaller[s decryptSessionIndex].b,
[3] parmBufferSize, (UINT16)size,
&extraKey,
[4] parmBufferStart) ;

71129

4. CVE-2023-1017 and CVE-2023-1018

CryptUtil.c

TPM RC
CryptParameterDecryption (
TPM HANDLE handle,
TPM2B *nonceCaller,
UINT32 bufferSize,
UINT16 leadingSizeInByte,
TPM2B AUTH *extraKey,
BYTE *pbuffer
)
{
[...]
[1] cipherSize = (UINT32)BYTE ARRAY TO UINT16 (buffer);
[2] buffer = gbuffer([2];
[...]
swap.h

72/129

4. CVE-2023-1017 and CVE-2023-1018

Bug #1- OOB read in CryptParameterDecryption function (CVE-2023-1018)

® CryptParameterDecryption function in cryptutil.c usesthe BYTE ARRAY TO UINT16 Macro to
read a 16-bit field (ciphersize) from the buffer pointed by parmBufferstart without checking if

there's any parameter data past the session area.

73/129

4. CVE-2023-1017 and CVE-2023-1018

Bug #1- OOB read in CryptParameterDecryption function (CVE-2023-1018)

® CryptParameterDecryption function in cryptutil.c usesthe BYTE ARRAY TO UINT16 Macro to
read a 16-bit field (ciphersize) from the buffer pointed by parmBufferstart without checking if
there's any parameter data past the session area.

® If a malformed command doesn't contain a parameterarea past the sessionarea, it will trigger

an out-of-bounds memory read, making the TPM access memory past the end of the

command.

74/129

4. CVE-2023-1017 and CVE-2023-1018

Bug #1- OOB read in CryptParameterDecryption function (CVE-2023-1018)

® CryptParameterDecryption function in cryptutil.c usesthe BYTE ARRAY TO UINT16 Macro to
read a 16-bit field (ciphersize) from the buffer pointed by parmBufferstart without checking if
there's any parameter data past the session area.

® If a malformed command doesn't contain a parameterarea past the sessionarea, it will trigger
an out-of-bounds memory read, making the TPM access memory past the end of the

command.
® The utnTi6 Unmarshal function should have been used instead, which performs proper size

checks before reading from a given buffer.

75/129

4. CVE-2023-1017 and CVE-2023-1018

tag
size

commandCode

handle3

authorizationSize

authorizationArea

arameters Missing, but assumed
L 3 to be present

76/129

4. CVE-2023-1017 and CVE-2023-1018

Bug #1- OOB read in CryptParameterDecryption function (CVE-2023-1018)

TPM RC uintl6é_t Unmarshal (uintl6é_t* target, BYTE** buffer, INT32* size) {
uintlé_t value net = 0;
if (!size || *size < sizeof (uintl6_t)) {
return TPM RC INSUFFICIENT;
}
memcpy (&value net, *buffer, sizeof (uintlé_t));
switch (sizeof (uintlé_t)) {
case 2:
*target = bel6toh(value net);
break;
case 4:
*target = be32toh(value net);
break;
case 8:
*target = be64toh(value net);
break;
default:
*target = value net;

}

*pbuffer += sizeof (uintlé_t);
*size -= sizeof (uintlé_t);
return TPM RC SUCCESS;

77129

4. CVE-2023-1017 and CVE-2023-1018

Step 1) - Start Auth Session

% | Application = TPM

.tag = TPM_ST_NO_SESSIONS

D
.command =

A 4

78/129

Step 2) - Auth Response

|

4. CVE-2023-1017 and CVE-2023-1018

Application

.tag = TPM_ST_NO_SESSIONS

D)
.command =

.tag = TPM_ST_NO_SESSIONS

.responseCode = TPM_RC_SUCCESS

2) .sessionHandle = 0x2000000

(0)

A 4

A

r"
L J

TPM

79/129

. CVE-2023-1017 and CVE-2023-1018

Step 3) - Create Primary with no Parameter Area

rA
L

TPM

K"' Application

.tag = TPM_ST_NO_SESSIONS
.command =

A\ 4

.tag = TPM_ST_NO_SESSIONS
.responseCode = TPM_RC_SUCCESS (0)

2) .sessionHandle = 0x2000000
|

A

.tag = TPM_ST_SESSIONS

.command =

.authCommand.sessionHandle = 0x2000000
.authCommand.nonceSize = 0x0000
.authCommand.sessionAttrs.decrypt = 1

3)
.authCommand.authsize = 0x0000

N
»

80/129

Part 4.2

Bug #2 - OOB write in CryptParameterDecryption function (CVE-2023-
1017)

4. CVE-2023-1017 and CVE-2023-1018

CryptUtil.c

TPM RC
CryptParameterDecryption (

TPM HANDLE handle,

TPM2B *nonceCaller,

UINT32 bufferSize,

UINT16 leadingSizeInByte,

TPM2B AUTH *extraKey,

BYTE *pbuffer

)
{

[...]

[1] cipherSize = (UINT32)BYTE ARRAY TO UINT16 (buffer);
[2] buffer = &buffer[2];

[...]

(continues next slide)

82/129

4. CVE-2023-1017 and CVE-2023-1018

(continued)

[...]
[3] if (cipherSize > bufferSize)
return TPM RC SIZE;

MemoryCopy2B (&key.b, &session->sessionKey.b, sizeof (key.t.buffer));
MemoryConcat2B (&key.b, &extraKey->b, sizeof (key.t.buffer));
if (session->symmetric.algorithm == TPM ALG XOR)

[4] CryptXORObfuscation (session->authHashAlg, &key.b, nonceCaller,
& (session->nonceTPM.b), cipherSize, buffer);
else

[5] ParmDecryptSym (session->symmetric.algorithm, session->authHashAlg,
session->symmetric.keyBits.sym,
&key.b, nonceCaller, &session->nonceTPM.b,
cipherSize, buffer);
return TPM RC SUCCESS;

83/129

4. CVE-2023-1017 and CVE-2023-1018

Bug #2 - OOB write in CryptParameterDecryption function (CVE-2023-
1017)

® If a proper parameterarea is provided (avoiding bug #1), the first two bytes of it are interpreted

as the size of the data to be decrypted (ciphersize), and the buffer pointer is advanced by 2.

84/129

4. CVE-2023-1017 and CVE-2023-1018

Bug #2 - OOB write in CryptParameterDecryption function (CVE-2023-
1017)

® If a proper parameterarea is provided (avoiding bug #1), the first two bytes of it are interpreted
as the size of the data to be decrypted (ciphersize), and the buffer pointer is advanced by 2.
® There's an attempt of a sanity check: if ciphersize value is greater than the actual size of

parameterArea, then it bails out.

85/129

4. CVE-2023-1017 and CVE-2023-1018

Bug #2 - OOB write in CryptParameterDecryption function (CVE-2023-
1017)

® If a proper parameterarea is provided (avoiding bug #1), the first two bytes of it are interpreted
as the size of the data to be decrypted (ciphersize), and the buffer pointer is advanced by 2.

® There's an attempt of a sanity check: if ciphersize value is greater than the actual size of
parameterArea, then it bails out.

® But there's a problem here: after reading the ciphersize 16-bit field and advancing the buffer
pointer by 2, the function forgets to subtract 2 from buffersize, to account for the 2 bytes that

were already processed.

86/129

4. CVE-2023-1017 and CVE-2023-1018

Bug #2 - OOB write in CryptParameterDecryption function (CVE-2023-
1017)

@ It's possible to pass the sanity check with a ciphersize value that is larger by 2 than the actual

size of the remaining data.

87/129

4. CVE-2023-1017 and CVE-2023-1018

Bug #2 - OOB write in CryptParameterDecryption function (CVE-2023-
1017)

@ It's possible to pass the sanity check with a ciphersize value that is larger by 2 than the actual

size of the remaining data.

® As a consequence, when either cryptxorRObfuscation () OF ParmbecryptSym () are called to

decrypt the data in the parameterarea following the ciphersize field, the TPM ends up writing

2 bytes past the end of the buffer, resulting in an out-of-bounds write.

88/129

4. CVE-2023-1017 and CVE-2023-1018

State before parsing Parameter Area
Buffer

l 2 bytes
&
\
D\

cipherSize =58 AAAAAAAAAAAAAAA

BBBBBBEBBBBBBBBBBBBBBBB

ccccccccccececececceccecceccecccec
/

BufferSize (length of remaining data) = 60

89/129

4. CVE-2023-1017 and CVE-2023-1018

Expected state after parsing cipherSize
Buffer

2 bytes l
&
(A
D\

cipherSize =58 AAAAAAAAAAAAAAA

BBBBBBEBBBBBBBBBBBBBBBB

ccccccccccececececceccecceccecccec
/

BufferSize (length of remaining data) = 58

90/129

4. CVE-2023-1017 and CVE-2023-1018

Actual state after parsing cipherSize
Buffer

2 bytes l
&
(A

cipherSize =58 AAAAAAAAAAAAAAA

\

BBBBBBEBBBBBBBBBBBBBBBB

GEEEECCCCEECEEtEGEEER
~ /

N2 |

.

BufferSize (length of remaining data) = 60

917129

4. CVE-2023-1017 and CVE-2023-1018

This state becomes valid!
Buffer

2 bytes l
N
(] -

\\
cipherSize =60 AAAAAAAAAAAAAAA

BBBBBBBBBBBBBBBBBBBBBB - 98 bytes

cccccccccccecececcecececceccecece
~ |

QN7 j

BufferSize (length of remaining data) = 60

92/129

4. CVE-2023-1017 and CVE-2023-1018

Step 1) - Start Auth Session

% | Application = TPM

.tag = TPM_ST_NO_SESSIONS

D
.command =

A 4

93/129

Step 2) - Auth Response

|

4. CVE-2023-1017 and CVE-2023-1018

Application

.tag = TPM_ST_NO_SESSIONS

D)
.command =

.tag = TPM_ST_NO_SESSIONS

.responseCode = TPM_RC_SUCCESS

2) .sessionHandle = 0x2000001

(0)

A 4

A

r"
L J

TPM

94/129

4. CVE-2023-1017 and CVE-2023-1018

Step 3) - Create Primary with crafted paramSize

r"
L J

% | Application TPM

.tag = TPM_ST_NO_SESSIONS

1

) .command =
.tag = TPM_ST_NO_SESSTIONS

2 .responseCode = TPM_RC_SUCCESS (0)
.sessionHandle = 0x2000001

< |
.tag = TPM_ST_SESSIONS
.command =
.authCommand.sessionHandle = 0x2000001
.authCommand.nonceSize = 0x0000

3 .authCommand.sessionAttrs.decrypt = 1

.authCommand.authSize = 0x0000
.paramSize = MAX_CMD_SIZE -

sizeof(base + auth) + 2
.paramArea = '\x41' * (MAX_CMD_SIZE -
sizeof(base + auth))

N
>

95/129

Part 4.3

Impact of the vulnerabilities

4. CVE-2023-1017 and CVE-2023-1018

1 - Impact of the OOB read

® Function cryptrParameterbecryption in Cryptutil.c can read 2 bytes past the end of the
received TPM command. If an affected TPM doesn't zero out the command buffer between
received commands, it can result in the affected function reading whatever 16-bit value was

already there from a previous command.

97129

4. CVE-2023-1017 and CVE-2023-1018

1 - Impact of the OOB read

® Function cryptrParameterbecryption in Cryptutil.c can read 2 bytes past the end of the
received TPM command. If an affected TPM doesn't zero out the command buffer between

received commands, it can result in the affected function reading whatever 16-bit value was

already there from a previous command.

® Impact depends on the implementation:
VMware doesn't clear out the command buffer between requests, so the OOB read can access
whatever value is already there from the previous command.

Hyper-V's virtual TPM pads the unused bytes in the command buffer with zeros every time it receives a
request, so the OOB access ends up reading just zeros.

98/129

4. CVE-2023-1017 and CVE-2023-1018

OOB read in Hyper-V

Command ¥ Memory 0 - 2 X
r11-000002663d10eacd ri12-0000000000000001 rl13=-P00OEOOCOEO0O10 +] | Address: | @rdi
r14-0000000000000000 15-000002663d10eb80 PEER7FFEDSLIEBO2G 22 48 15 00 00 00 00 00 00 00 GO 00 08 00 00 40 "H......v..vuw. @ -

STl e 90007FFEDS1EBOAD| S0 02 60 0O 0 1B 00 00 OL 31 40 00 00 OL 00 00] ..uuv.... 1@.....
€s=0033 $5-002b ds-002b es-002b fs-0053 gs-002b Billseariiil 00007FFEDS1EBGEA|00 00 02 00 00 60 00 00 20 00 006 00]00 00 00
B e R e T i 00PO7FFEDSLICROCO 00 00 00 G0 00 00 00 00 00 00 00 00 00 00 00 00 +..ovvveeneren...
0007 e d51972c0 ©785d8000000 jne TpmEngUM!CryptParameterDecryption+0x142 (06007 FEDS1EREDE 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00ow.oen.n.n..
0:002> t DOBO7FFEDS1EBOED 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 D0oovveeen....
rax=00007ffed51e9608 rbx=00000000PPO0R002 CX=0000000ARORBA02 OO EEEDS RO 0B 66 00 00 06 06 60 00 06 06 60 00 00 06 00 60
rdx=0000000000000000 rsi=00007ffed51e9608[rdi-0eee7 fed51ebabb] OBOrEEEDA 1R 100 0B 60 60 00 06 06 60 66 06 66 60 96 06 06 60 06
rip=00007ffed51972¢6 rsp=000002663d16eadd rbp=000e7ffedslesoce 00007FFEDSLEBLLO 0O 0O 0O 0O 0O 00 00 00 00 00 00 00 00 00 00 00
r8=0000000000000000 r9=0000000000000002 r10=00007ffed51e9902 DOBO7FFEDSIEB120 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00co.oovnn...
r11=-000002663d10eaed I12-0000000000000001 13=0000000000000010 ©OAO7FFEDSIEB1I20 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00ocov....

r14-0000000000000000 I15-000002663d16ebso DOAO7FFEDS1EB1A0 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00c..oovn....

lopl=0 nv up el pl zr na po nc PPOO7FFEDSLEBLSO 0O OO 00 00 00 00 00 00 00 B0 00 0O D0 00 00 D0v.eveene.n.

;;;E:;imli:;?iﬁ:raﬂ;iggézcr;;;?gﬁEeX;ngg53 gs=002b ef1-00000246 BBBO7FFEDSIEBIG0 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 B0c..oovvn...

L G _ . PEARZFFEDS1ER170 00 00 00 00 60 00 00 00 00 00 00 00 00 00 00 00

00007ffe d51972¢c6 ofbelf movzx ebx,byte ptr [rdi] ds:@@ee7ffe d51ebbbre | ;.0 crips1es1s0 00 60 00 00 00 06 0O 00 GO 0O 00 GO OO 08 00 B8

~| | pBEO7FFEDSIER190 00 0B 0O 0O 00 00 00 60 00 00 0O 0D 00 00 00 0O

. y PBBR7FFEDSIERIAD 00 0O 0O 0O 00 00 0O 00 00 00 00 00 00 00 00 00
9:0025db DOAO7FFEDS1EEIRO 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 -

99/129

4. CVE-2023-1017 and CVE-2023-1018

2 - Impact of the OOB write

o FunCﬁOnSCZythORObfuscatﬂxﬂParmDecryptSwn“1Crythtil.c(Ca”ed1TOﬂ1
CryptParameterDecryption) can write 2 bytes past the end of the command buffer, resulting in

memory corruption.

100/129

4. CVE-2023-1017 and CVE-2023-1018

2 - Impact of the OOB write

® Functions CrythORObfuscation/ParmDecryptSym iN CryptUtil.c (called from
CryptParameterDecryption) can write 2 bytes past the end of the command buffer, resulting in
memory corruption.

® The chances of having something useful to overwrite adjacent to the command buffer depend

on how each implementation allocates the buffer that receives TPM commands.

101/129

4. CVE-2023-1017 and CVE-2023-1018

2 - Impact of the OOB write

o FunCﬁOnSCZythORObfuscatﬂxﬂParmDecryptSwn“1Crythtil.c(Ca”ed1TOﬂ1
CryptParameterDecryption) can write 2 bytes past the end of the command buffer, resulting in
memory corruption.

® The chances of having something useful to overwrite adjacent to the command buffer depend

on how each implementation allocates the buffer that receives TPM commands.

VMware uses an oversized buffer of size Ox10000, way bigger than the usual maximum TPM
command size of Ox1000 bytes;

102/129

4. CVE-2023-1017 and CVE-2023-1018

2 - Impact of the OOB write

o FunCﬁOnSCZythORObfuscatﬂxﬂParmDecryptSwn“1Crythtil.c(Ca”ed1TOﬂ1
CryptParameterDecryption) can write 2 bytes past the end of the command buffer, resulting in
memory corruption.

® The chances of having something useful to overwrite adjacent to the command buffer depend

on how each implementation allocates the buffer that receives TPM commands.

VMware uses an oversized buffer of size Ox10000, way bigger than the usual maximum TPM
command size of Ox1000 bytes;
Hyper-V uses a static variable of size 0x1000 as the command buffer;

103/129

4. CVE-2023-1017 and CVE-2023-1018

2 - Impact of the OOB write

o FunCﬁOnSCZythORObfuscatﬂxﬂParmDecryptSwn“1Crythtil.c(Ca”ed1TOﬂ1

CryptParameterDecryption) can write 2 bytes past the end of the command buffer, resulting in
memory corruption.

® The chances of having something useful to overwrite adjacent to the command buffer depend
on how each implementation allocates the buffer that receives TPM commands.

VMware uses an oversized buffer of size Ox10000, way bigger than the usual maximum TPM
command size of Ox1000 bytes;

Hyper-V uses a static variable of size 0x1000 as the command buffer;

SWTPM (QEMU) uses mal1oc () to allocate a command buffer of size Ox1008 (8 bytes for a send

command prefix that can be used to modify the locality, plus Ox1000 bytes for the maximum TPM
command size).

104/129

4. CVE-2023-1017 and CVE-2023-1018

2 - Impact of the OOB write

® Worst case scenario; OOB write — code execution on the TPM

VM escape in the case of a virtual TPM

105/129

4. CVE-2023-1017 and CVE-2023-1018

2 - Impact of the OOB write

® Worst case scenario; OOB write — code execution on the TPM

VM escape in the case of a virtual TPM

® Corrupting TPM memory containing sensitive data such as a key

106/129

4. CVE-2023-1017 and CVE-2023-1018

2 - Impact of the OOB write

® Worst case scenario; OOB write — code execution on the TPM

VM escape in the case of a virtual TPM

® Corrupting TPM memory containing sensitive data such as a key

® A DoS can cause enough trouble:

Failure for full disk encryption solutions relying on the TPM (e.g. Bitlocker)
Failure to perform boot attestation

107/129

4. CVE-2023-1017 and CVE-2023-1018

OOB write in Hyper-V - Before

4

Memory 0 v % X

IO Ir =T TSP UUUUUZUT UT Z7 COUT T OP=U00UT T TUZOT UoJCy

r8=00007ffd287699c0 r9=00RA7fFd2876960a rl10=00007fFd28769902 =] | Address; [00007ffd"2876d0a0
r11=P00002678f27cac0 rl12=00000A0RR00PER01 r13=0000000RARRBO10
r14=000000000e00eTe5 r15=000002678F27ebs0

POBB/FFD2876CE16 41 A1 41 41 41 41 41 41 41 41 41 41 41 41 41 A1 AAAAAAAAAAAAAAAA [+
BOBOTFFD2876C020 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 AAAAAAAAAAAAAAAA

lopl=o nv up el pl zr na po nc 00OO7FFD2876C0236 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 AAAAAAAAAAAAAAAA
€5=0033 s5=002b ds=002b es=002b fs=0053 gs=002b ef1=00000246 00OO7FFD2876C040 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 AAAAAAAAAAAAAAAA
TpmEngUM!CryptParameterDecryption+oxf3: . | 00007FFD28760050 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 AAAAAAAAAAAAAAAA
g?ggiifg 2871734f 895c2420 Doy dword ptr [rsp+2eh],ebx ss:00000267 8f27eal | 90007FFD2876C060 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 AAAAAAAAAAAAAAAA

PEPO7FFD2876C6070 41 A1 41 41 41 41 41 41 41 41 41 41 41 41 41 41 AAAAAAAAAAAAAARA
DEPO7FFD2876C080 41 A1 41 41 41 41 41 A1 41 41 41 41 41 41 A1 A1 AAAAAAAAAAAAAAAA
DEBO7FFD2876C000 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 AAAAAAAAAAAAAAAA
00O 7FFD2876C0A0 PO 00 00 00 PO 00 B0 OO 0O 00 PO 00 PO OOivvveinsennas
PEPO7FFD2876C0BO 00 VO 00 PO 00 0O OO OO OO OO0 00 00 00 00 00 POicivvvnannas
PEVO7FFD2876C0OCO 00 VO 00 PO 00 OO OO OO 00 OO0 00 00 00 00 00 POcviivvvnannas
PEPO7FFD2876(0D0 60 PO 0D GO 0V 0O BB PO OO 0D 0O @G0 00 B0 BB BBc0cean

rax=0eee7ffd2876960a rbx-0000000000000Te5 rcx=000000000000008b
rdx=000002678f27ea40 rsi-00007f1d28769608 rdi=-00007ffd2876bebd
rip=000e7ffd28717353 rsp=000002678f27ca0@ rbp=eeee7ffd287699ce
rg=00007ffd287699ce@ r9-00007ffd2876960a r1e=e0007ffd28769902
ri1=000802678f27caed rl2=0P0POEEEEOPEBEEO1 r13=0000PA0EEVEBEB1O
r14=0000000000000fe5 r15=000P02678f27ebs0

iopl=0 nv up ei pl zr na po nc PPEA7FFD2876COED 00 00 0O 0O 0P OO PO GO 60 GO 00 00 00 PO BB BBceeeen
€5=0033 s5=002b ds=002b es=002b fs=0053 gs=002b ef1-00000246 PEEE7FFD2876C0F0 @0 0O 00 00 00 00 DB G0 00 6D 00 00 00 00 0B BB
TpmEngUM! CryptParameterDecryption+oxf7: i . PEEE7FFD2876C100 @8 00 00 00 00 00 BB 00 00 60 00 00 00 00 0B BB . .u..veweseeenss
eeee7ffd 28717353 e8adf3ffff call TpmEngUM! CryptXORObfuscation (eeee7ffd 2871~ 00PB7FFD2876C110 00 00 08 00 0P 00 DO OO 66 00 00 00 00 88 00 POwr e,

J b POEO7FFD2876C120 @0 00 00 00 00 00 PO OO 00 00 PO 00 00 00 D0 BB . .ur.resesenenss
8:001> P0EO7FFD2876C130 @0 00 00 00 00 00 PO O0 00 00 DO 00 00 00 DD DO . .u..vesenenenss =

108/129

OOB write in Hyper-V - After

Command X

[l L AL AL ALl LAl al i sl sl P)
iopl=0 nv up
c5=0033 s55=002b ds=

I L2099 Ls0 /s ol LiCuow
ei pl zr na po nc
002b

TpmEngUM! CryptParameterDecryption+oxf7:

eepe7ffd 28717353 egadf3ffff

call

9:001> ?tpmengum+0x5BOAD
Evaluate expression: 148725282320544 = @eee7ffd 2876beae

0:001> p
rax=0eeneeeReeReTCe
rdx=0000000000000000
rip=0eee7ffd28717358

r8=000002678f27e730
r11=-000000009b463e26
r14=0000000000000Te5
iopl=0 nv up
C5=0033

rbx=0000000000000Te5
rsi=peee7ttd28769608
rsp=000002678f272200
r9=000002678f27ea40
r12=0000000000000001
r15=000002678127eb8@
ei pl nz na po nc

TpmEngUM!CryptParameterDecryption+exfc:

0eea7ffd 28717358 eb25

4
0:001>

jmp

es=002b fs=0053 gs=002b

rcx=e8b7391d6ec60000
rdi=eeee7ffd2876bebd
Pbpz@@@@?fdeS?SQQC@
r16=pP0eeeREE0eeEeeeh
r13=0080000000000010

ss=002b ds=082b es=p@2b fs=00@53 gs=002b

ef1-00000246

efl-00000206

TpmEngUM!CryptXoRObfuscation (@@ee7ffd 2871

TpmEngUM!CryptParameterDecryption+0x123 (@€

»

Ll Memory 0 v 2 X

-

-

4. CVE-2023-1017 and CVE-2023-1018

Address: 00007ffd"2876c0a0

POBOJFFD2876C010 9B
POBOJFFD2876C020 D9
PROO7FFD2876C030 D4
POBOJFFD2876C040 C3
POO7FFD2876C050 2A
POPO7FFD2876C060 67
P0VO7FFD2876C0O70 52
P0VO7FFD2876C080 65
P@OO7FFD2876C090 6A

POBB7FFD2876CBAB]26 (CO

POBO7FFD2876C0BO 00
POBO7FFD2876COCO 00
POOO7FFD2876CEDO 00
POOO7FFD2876COED 00
POOO7FFD2876COF0 00
POOO7FFD2876C100 00
P@0O7FFD2876C110 00
P@0O7FFD2876C120 00
P@OO7FFD2876C130 00

11
E8
BD
39
8C
F4
1C
A2
DF

(6 15]
(15]
(615]
(615]
(15]
(15]
(15]
(15]
(15]

82
2A
c2
D4
8D
EF
D1
c3
AB
(1]
(615]
(515]
(1]
(1]
(1]
00
(5]
(515]
(515]

CE
5]=
cC
87
3E
3B
c7
E9
co
[515]
(505]
(505]
00
00
00
(505]
00
00
00

95
B9
67
E1l
Do
Fo
49
co
D2
[515]
00
00
00
00
00
00
(53]
(53]
(53]

23
a8
B6
ce
1B
1E
1B
5A
59
[55]
[515]
[55]
[5]5]
[5]5]
[5]5]
[5]5]
[55]
(53]
(53]

A9
21
BB
7C
BE
7
6C
DS
FF
o0
o0
o0
o0
o0
00
00
00
00
o0

99
35
ce
66
CB
3D
98
a7
BB
515}
=15}
=15}
=15}
=15}
00
00
00
00
00

5F
Fé
B@
93
68
13
9A
6E
19
(515]
(5]
(=5]
(=]
(=]
(=5]
(53]
(55]
(55]
(5]5]

AB
7A
85
BA
57
B1
34
18
73
(5[]
e
(1]
e
e
(15]
(5[5]
(]3]
(5]5]
(]3]

B4
ca
33
B8
EB
68
94
7E
B6
(5[5]
(515]
(515]
2o
2o
(5]5]
(5]5]
(5]9]
(5]9]
(5]9]

10
37
64
97
2F
99
1C
CC
37
0o
(5[5}
(505}
0o
0o
(505}
(505}
(5[5}
(5[5}
(5[5}

37
40
6E
B8
B8
De
6E
B
2E
[515]
00
00
00
00
00
00
00
00
00

3C
79
FA
8D
8F
99
c2
4E
DA
00
00
00
00
00
00
00
00
00
00

21
63
3E
2C
BA
a3
2B
8D
a7
[5]5]
[2%]
[21%]
oo
oo
[=l%]
23]
53]
[55]
[55]

28 ...2.#2. 22.7¢1([
OF ??%.?HI5?z27@ycC.

F7 ?92.2?|f.j?.7.,°?
90 *,.>?.27hW?/?.7.
€6 g??;?.?=.?h.?..?
32 R.P?IL1..4..n7+2
C9 e??P?PZ?.n.~P.N.?
JF jPRRRY?P.s?7...
00 &7t

109/129

Part b

Disclosure Details

Q 5. Disclosure Details

Disclosure Details

® Industry-wide disclosure process, with many parties involved.

Ivdn Arce handled it from Quarkslab's side.
Coordinated via CERT/CC.

1111129

Q 5. Disclosure Details

Disclosure Details

® Industry-wide disclosure process, with many parties involved.

Ivdn Arce handled it from Quarkslab's side.
Coordinated via CERT/CC.

® CERT/CC granted access to the vulnerability report to 1600 vendors.

Reason: several PC OEM and hardware vendors expressed interest in reaching out to other vendors
up and down their supply chain.

12/129

Q 5. Disclosure Details

Disclosure Details

® Industry-wide disclosure process, with many parties involved.

Ivdn Arce handled it from Quarkslab's side.
Coordinated via CERT/CC.

® CERT/CC granted access to the vulnerability report to 1600 vendors.

Reason: several PC OEM and hardware vendors expressed interest in reaching out to other vendors
up and down their supply chain.

® Google pushed the fix to a Chromium OS public repository before embargo ended.

13/129

Q 5. Disclosure Details

Disclosure Details

® Industry-wide disclosure process, with many parties involved.

Ivdn Arce handled it from Quarkslab's side.
Coordinated via CERT/CC.

® CERT/CC granted access to the vulnerability report to 1600 vendors.

Reason: several PC OEM and hardware vendors expressed interest in reaching out to other vendors
up and down their supply chain.

® Google pushed the fix to a Chromium OS public repository before embargo ended.
® Huawei's OpenEuler Linux distribution made the vulnerability report available on its public

issue tracker.

14/129

Q 5. Disclosure Details

Disclosure Details

® Some hardware vendors reported that their products were not affected.

Hard to verify due to the lack of debugging/monitoring capabilities.
If they identified and fixed the bugs beforehand, they never reported them to TCG.

115/129

Q 5. Disclosure Details

Disclosure Details

® Some hardware vendors reported that their products were not affected.

Hard to verify due to the lack of debugging/monitoring capabilities.
If they identified and fixed the bugs beforehand, they never reported them to TCG.

® Vulnerable status remains unknown for several hardware vendors (see
https.//kb.cert.org/vuls/id/782720)

Broadcom Unknown
Huawei Unknown
Qualcomm Unknown

116/129

https://kb.cert.org/vuls/id/782720

Part 6

Conclusions

Q 6. Conclusions

Conclusions (1)

® Every TPM (either software or hardware implementations) whose firmware is based on the
reference code published by the Trusted Computing Group is expected to be affected by

these two vulnerabilities.

18/129

Q 6. Conclusions

Conclusions (1)

® Every TPM (either software or hardware implementations) whose firmware is based on the
reference code published by the Trusted Computing Group is expected to be affected by

these two vulnerabilities.

® Although all affected TPMs share the exact same vulnerable function, the likeliness of
successful exploitation depends on how the command buffer is implemented, and that part is

left to each implementation.

Everyone seems to do it in a different way.

119/129

Q 6. Conclusions

Conclusions (2)

® We were able to verify that these vulnerabilities are present in the software TPMs included in
major desktop virtualization solutions such as VMware Workstation, Microsoft Hyper-V and

QEMU.
SWTPM (used by QEMU) case looked dangerous (I haven't checked VirtualBox or Parallels Desktop).

120/129

Q 6. Conclusions

Conclusions (2)

® We were able to verify that these vulnerabilities are present in the software TPMs included in
major desktop virtualization solutions such as VMware Workstation, Microsoft Hyper-V and

QEMU.
SWTPM (used by QEMU) case looked dangerous (I haven't checked VirtualBox or Parallels Desktop).

® Virtual TPMs available in the biggest cloud computing providers were also likely affected.

1211129

Q 6. Conclusions

Conclusions (2)

® We were able to verify that these vulnerabilities are present in the software TPMs included in
major desktop virtualization solutions such as VMware Workstation, Microsoft Hyper-V and

QEMU.
SWTPM (used by QEMU) case looked dangerous (I haven't checked VirtualBox or Parallels Desktop).

® Virtual TPMs available in the biggest cloud computing providers were also likely affected.

Google Cloud uses the IBM version of the reference implementation, which was affected.
Microsoft Azure is based on Hyper-V, which was affected.

122/129

Q 6. Conclusions

Conclusions (3)

® We confirmed the OOB write in a Dell machine with a Nuvoton hardware TPM.
Dell Latitude E5570 with Nuvoton NPCT65x, firmware version 1.3.0.1

123/129

Q 6. Conclusions

Conclusions (3)

® We confirmed the OOB write in a Dell machine with a Nuvoton hardware TPM.
Dell Latitude E5570 with Nuvoton NPCT65Xx, firmware version 1.3.0.1
After triggering the bug, the chip would stop responding to further commands, and required a hard
reboot of the computer to be operational again.

124/129

Q 6. Conclusions

Conclusions (3)

® We confirmed the OOB write in a Dell machine with a Nuvoton hardware TPM.

Dell Latitude E5570 with Nuvoton NPCT65Xx, firmware version 1.3.0.1
After triggering the bug, the chip would stop responding to further commands, and required a hard
reboot of the computer to be operational again.

® We expected most TPM hardware vendors to be affected too.

125/129

Q 6. Conclusions

Conclusions (3)

® We confirmed the OOB write in a Dell machine with a Nuvoton hardware TPM.

Dell Latitude E5570 with Nuvoton NPCT65Xx, firmware version 1.3.0.1
After triggering the bug, the chip would stop responding to further commands, and required a hard
reboot of the computer to be operational again.

® We expected most TPM hardware vendors to be affected too.

The lack of debugging capabilities in the TPM environment makes it harder to confirm the presence of
vulnerabilities.

126/129

Q 6. Conclusions

Conclusions (4)

® Reference implementations deserve special attention, security-wise.

1271129

Q 6. Conclusions

Conclusions (4)

® Reference implementations deserve special attention, security-wise.

Vulnerabilities in reference implementation code spread across diverse codebases, and may end up
biting everyone.

128/129

i% O TROOPERS
uarkslab

Questions?

https://www.quarkslab.com/

