
(Windows) Hello from the other side

Dirk-jan Mollema

About me

- Dirk-jan Mollema

- Lives in The Netherlands

- Hacker / Researcher / Founder / Trainer @ Outsider Security

- Given talks at Black Hat / Def Con / BlueHat / Troopers

- Author of several (Azure) Active Directory tools
- mitm6
- ldapdomaindump
- BloodHound.py
- aclpwn.py
- Co-author of ntlmrelayx
- ROADtools

- Blogs on dirkjanm.io

- Tweets stuff on @_dirkjan

This talk

• Windows Hello for Business (WHFB) concepts

• WHFB deployment flavours

• WHFB key enrollment process

• Bypassing MFA with WHFB

• Lateral movement with WHFB

• WHFB in hybrid setups

• Moving laterally from AAD to AD with WHFB

Windows Hello (for Business)

• One of Microsoft’s Passwordless authentication offerings

• Uses cryptographic keys that are unlocked using a PIN or with
biometrics to authenticate

• A separate key is used per user/device combination

• Exists in on-prem Active Directory as well as in Azure AD

Authentication

Azure AD

Prior work

• Exploiting Windows Hello for Business by Michael Grafnetter
• Explores WHFB internals in Active Directory

• Inspiration for “Shadow Credentials” attack in Active Directory by Elad Shamir

• Several research papers on bypassing biometrics or face recognition
protection

• Research on internal Windows handling of credentials and keys by
Benjamin Delpy

• Nothing specifically on WHFB with Azure AD that I could find

Windows Hello for Business key points

• Provides strong, phishing resistant, Multi Factor Authentication

• Requires MFA to provision

• Is bound to a specific device

• Has its keys protected by hardware via a Trusted Platform Module
(TPM), preventing attackers from stealing the keys

• Is more secure than password authentication

Windows Hello for Business flavours

• Azure AD native

• Active Directory only

• Azure AD and Active Directory
• Cloud Kerberos trust

• Hybrid key trust

• Hybrid certificate trust

Require configuration

Always enabled

Azure AD native WHFB

• Assumes Azure AD joined or registered device

• WHFB enrollment will take place as the final step of Windows
installation, if enabled

• If enabled later, will prompt on sign-in

Azure AD WHFB provisioning

Azure AD WHFB provisioning – MFA prompt

Azure AD WHFB provisioning – PIN setup

WHFB Provisioning – technical components

• Azure AD Device identity
• Proven by certificate + private key

• Primary Refresh Token
• Long-lived refresh token used for Single Sign On of the user

• Trusted Platform Module (TPM)
• Hardware based protection for private keys (device key, PRT session key,

WHFB keys)

WHFB provisioning - MFA

NGC MFA

• NGC: Next Generation Credentials

• “ngcmfa” indicates the need for a “fresh” MFA prompt, instead of a
cached MFA status

• Reflected as claim in issued access tokens

WHFB Provisioning token requirements

• Needs to be a token issued to a joined/registered device
• Should originate from a PRT

• Device ID is in the token

• Should contain the ngcmfa claim
• Indicates recent (~10 mins) MFA was performed

• Audience should be the device registration service
(enterpriseregistration.windows.net)

WHFB provisioning

Access token (JWT)

WHFB (NGC) public key

WHFB provisioning response

Obtaining a WHFB backed PRT

JWT header

• Device certificate and signing metadata

JWT Payload

• Nonce from Azure AD

• Username

• Assertion (another JWT)

Signed assertion with WHFB private key

Tenant

Timestamp

Obtain PRT

PRT

Encrypted PRT session key

Kerberos stuff

Emulating this flow with roadtx

• roadtx (part of ROADtools) supports WHFB
• Key generation

• Key enrollment token requesting with ngcmfa claim

• Requesting PRTs with Windows Hello private keys

Analyzing WHFB security

• Full provisioning process is controlled by the client
• Policy determines whether the device will initiate provisioning

• Enrollment is possible regardless of policy configuration

• Any device + user combination in the tenant can register WHFB keys
that act as alternative credentials for the user

Analyzing key provisioning

Access token (JWT)

WHFB (NGC) public key

Key provisioning flaws

• “ngcmfa” claim was not required in practice

• Any token with “mfa” claim and a device ID would work

• Useful candidates:
• Signed-in browser sessions on users corporate / registered personal devices

• Single-sign-on data from users devices

TPM

Attack schematics

2. Provision new key

Azure AD

LSASS

Attacker

1. Request SSO data

Registering a WHFB key with SSO

1. Request SSO data on victim host

Technical reference: https://dirkjanm.io/abusing-azure-ad-sso-with-the-primary-refresh-token/

Get token with SSO data

• Obtaining a token for the device registration service

Provisioning a new WHFB key

Requesting a PRT with the new key

Attack TL;DR

• Possible to overwrite the registered WHFB key from a device via SSO

• Defeats TPM protection of the key material

• Provides persistence for attackers

• A WHFB key can be used with any device (it’s a feature™)

• With some tricks possible to restore the original key and keep the
victims device working

WHFB from the perspective of
Azure AD

WHFB key storage

Registering WHFB keys directly on users

• Users can modify their own “searchableDeviceKey” property via the
Azure AD Graph

• No MFA requirements to register MFA method this way, except
general requirements from Conditional Access

• Can bypass MFA if Conditional Access is applied selectively

• Prerequisites:
• Attacker needs to have a device in the tenant (either registered on the fly or

stolen cert + key from legit device)
• A valid access token for the AAD Graph

Registering a new WHFB key

Patching the searchableDeviceKey property

Attack method: device code phishing

2. Send device code phish

Azure AD

Attacker Victim

Alternative scenarios

• Abuse credential phishing (with MFA if required)

• Temporary device access

• Permissions to modify accounts
• User Administrator

• Global Administrator

• etc

Hybrid scenarios

WHFB Hybrid

3 Methods:

• Cloud Kerberos trust

• Hybrid key trust

• Hybrid certificate trust

WHFB Cloud Kerberos Trust

Azure ADActive Directory

Virtual RODC

Shared Kerberos Keys

Virtual read-only Domain Controller

The technical details

• When we request a PRT with a WHFB key, we get a partial TGT

• We can exchange this for a full TGT and access Active Directory
connected resources

• Only works for hybrid accounts, since cloud-only accounts do not
exist on-premises

PRT with TGT

Lateral movement with WHFB

• User administrators and higher could provision WHFB keys using the
AAD Graph

• Normal restrictions that prevent modifying higher privileged accounts
apply

• Possible to add backdoor credentials to any regular user

• Possible to move laterally between hybrid identities, and authenticate
on-premises as long as we have line-of-sight to a Domain Controller

• Does not work for Domain Admins and other protected accounts
since the virtual RODC is not allowed to give out TGTs for those

Request PRT for hybrid user

Extracting the TGT and exchanging for full TGT

How about NTLM?

• WHFB Kerberos TGT doesn’t allow you to use NTLM since no NT hash
is present and no passwords are used to calculate it from

• NT hash can be recovered from the DC during TGT “upgrade”

• Documented in MS-KILE

Ref: https://learn.microsoft.com/en-us/openspecs/windows_protocols/ms-kile/2a32282e-dd48-4ad9-a542-609804b02cc9

TGT Upgrade reply

Decrypted reply containing NT hash

Recovering the NT hash from the victim

Technical details by Leandro Cuozzo:
https://www.secureauth.com/blog/the-kerberos-key-list-attack-the-return-of-the-read-only-domain-controllers/
Part of ROADtools hybrid: https://github.com/dirkjanm/roadtools_hybrid

Lateral movement from AAD to AD

Kerberos Key Trust consequences

• Kerberos Key Trust establishes a trust relationship towards Azure AD

• Azure AD manages keys of virtual RODC in Active Directory

• As a result, a Global Admin in Azure AD with network connectivity to
a Domain Controller can:
• Recover the NT hash of most synced users (not Domain Admins or other high

privileged groups)

• Obtain Domain Admin privileges (still applicable even after fixes)

Global Admin to Domain Admin over
Kerberos Key Trust
• We can take over existing synced accounts and recover their NT hash

• Not possible anymore by assigning WHFB keys

• Many other methods exist (not as clean or quiet)

• For accounts that are not synced from AD to AAD, we can create the
synced account in AAD by using the Sync API as Global Admin.

• Creating this hybrid user make AAD issue partial TGTs that are
accepted by AD, based on the SID and SAM name contained.

Sync API call in human readable XML

Using https://github.com/ernw/python-wcfbin to encode/decode

https://github.com/ernw/python-wcfbin

Choosing the right victim account

• Domain Admin and other tier-0 equivalent groups filtered out by
RODC logic

Choosing the right victim account

• AD connect sync account is not filtered, and is Domain Admin
equivalent because of the Password Sync privileges

Getting a TGT for the sync account

• 2 options:
• Sync a new account fow which we set the password using the Sync API

• Change the SID and SAM name from an existing hybrid account to the SID and
SAM of the MSOL Sync account

• Changing SID possible with ROADtools or AADInternals

Obtaining a PRT and full TGT with new SID

Partial TGT with new SID in the PAC

Obtaining a PRT and full TGT with new SID

Recovering all NT hashes in the domain

Full version: https://dirkjanm.io/obtaining-domain-admin-from-azure-ad-via-cloud-kerberos-trust/

Disclosure and conclusions

Disclosure timeline

• October 2022: All cases submitted

• February-April 2023:
• Some back and forth about fix timeline

• Discussion about bounty classification disagreement

• May 2023: Fixes rolled out for most cases
• Not possible to add new keys anymore via “searchableDeviceKey” property

• “ngcmfa” now required to provision a key via device registration service

Windows Hello for Business - conclusions

• Provides strong, phishing resistant, Multi Factor Authentication

• Requires MFA to provision

• Is bound to a specific device

• Has its keys protected by a TPM, preventing attackers from stealing
the keys

• Is more secure than password authentication

All tools in the talk are based on the ROADtools framework/library

Open source at https://github.com/dirkjanm/ROADtools/

And https://github.com/dirkjanm/ROADtools_hybrid/

https://github.com/dirkjanm/ROADtools/
https://github.com/dirkjanm/ROADtools_hybrid/

(Windows) Hello from the other side

Questions? Twitter: @_dirkjan / Mail: dirkjan@outsidersecurity.nl

	Slide 1: (Windows) Hello from the other side
	Slide 2: About me
	Slide 3: This talk
	Slide 4: Windows Hello (for Business)
	Slide 5: Prior work
	Slide 6: Windows Hello for Business key points
	Slide 7: Windows Hello for Business flavours
	Slide 8: Azure AD native WHFB
	Slide 9: Azure AD WHFB provisioning
	Slide 10: Azure AD WHFB provisioning – MFA prompt
	Slide 11: Azure AD WHFB provisioning – PIN setup
	Slide 12: WHFB Provisioning – technical components
	Slide 13: WHFB provisioning - MFA
	Slide 14: NGC MFA
	Slide 15: WHFB Provisioning token requirements
	Slide 16: WHFB provisioning
	Slide 17: WHFB provisioning response
	Slide 18: Obtaining a WHFB backed PRT
	Slide 19: JWT header
	Slide 20: JWT Payload
	Slide 21: Signed assertion with WHFB private key
	Slide 22: Obtain PRT
	Slide 23: Emulating this flow with roadtx
	Slide 24
	Slide 25: Analyzing WHFB security
	Slide 26: Analyzing key provisioning
	Slide 27: Key provisioning flaws
	Slide 28: Attack schematics
	Slide 29: Registering a WHFB key with SSO
	Slide 30: Get token with SSO data
	Slide 31: Provisioning a new WHFB key
	Slide 32: Requesting a PRT with the new key
	Slide 33: Attack TL;DR
	Slide 34: WHFB from the perspective of Azure AD
	Slide 35: WHFB key storage
	Slide 36: Registering WHFB keys directly on users
	Slide 37: Registering a new WHFB key
	Slide 38: Patching the searchableDeviceKey property
	Slide 39: Attack method: device code phishing
	Slide 40: Alternative scenarios
	Slide 41: Hybrid scenarios
	Slide 42: WHFB Hybrid
	Slide 43: WHFB Cloud Kerberos Trust
	Slide 44: Virtual read-only Domain Controller
	Slide 45: The technical details
	Slide 46: PRT with TGT
	Slide 47: Lateral movement with WHFB
	Slide 48: Request PRT for hybrid user
	Slide 49: Extracting the TGT and exchanging for full TGT
	Slide 50: How about NTLM?
	Slide 51
	Slide 52: TGT Upgrade reply
	Slide 53: Decrypted reply containing NT hash
	Slide 54: Recovering the NT hash from the victim
	Slide 55: Lateral movement from AAD to AD
	Slide 56: Kerberos Key Trust consequences
	Slide 57: Global Admin to Domain Admin over Kerberos Key Trust
	Slide 58
	Slide 59: Sync API call in human readable XML
	Slide 60: Choosing the right victim account
	Slide 61: Choosing the right victim account
	Slide 62: Getting a TGT for the sync account
	Slide 63: Obtaining a PRT and full TGT with new SID
	Slide 64: Partial TGT with new SID in the PAC
	Slide 65: Obtaining a PRT and full TGT with new SID
	Slide 66: Recovering all NT hashes in the domain
	Slide 67: Disclosure and conclusions
	Slide 68: Disclosure timeline
	Slide 69: Windows Hello for Business - conclusions
	Slide 70
	Slide 71: (Windows) Hello from the other side

