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Why Research Stealing 

macOS PRT Cookie? 
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Why Research Stealing macOS PRT Cookie?
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Many organizations use Intune as MDM for both Windows and macOS

Conditional Access supported on macOS for Zero Trust enforcement

Existing research and detections focus mostly on Windows

Lack of research on macOS attack surface and exploitation paths

Current macOS detection & assessments are limited



The Research Inspired Us 

Olaf Hartong  & Dirk-jan Mollema  

Yuya Chudo & Takayuki Hatakeyama



PRT Can Exchange Everything We Wanted
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The PRT Cookie includes 
user identity + linked device information



The PRT Cookie includes 
user identity + linked device information
PRT Cookie  From Device Can

Include MFA Claim + Device Claim



Browser SSO on Windows
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Original Research: https://i.blackhat.com/Asia-24/Presentations/Asia-24-Chudo-Bypassing-Entra-ID-Conditional-Access-

Like-APT.pdf

Cloud AP:

aadcloudap

CreateSSOCookie

LSASS

LsaCallAuthenticationPackage

GetCookieInfoForUri

call number , payload

Chrome

BrowserCore.exe

MicrosoftAccount 

TokenProvider.dll
Nonce

PRT Cookie



Abuse Browser SSO on Windows

Cloud AP:

aadcloudap

CreateSSOCookie

LSASS

LsaCallAuthenticationPackage

GetCookieInfoForUri

A

B

C

RequestAAD

RefreshToken

BAADTokenBroker

Original Research: https://i.blackhat.com/Asia-24/Presentations/Asia-24-Chudo-Bypassing-Entra-ID-Conditional-Access-

Like-APT.pdf



BrowserCore is the 

component responsible 

for handling browser-

initiated SSO in Windows.
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How macOS use similar mechanism?



Company Portal on macOS

Ref: https://youtu.be/awckSIpCPMg?si=18uS-Ot0jNSeMpUs



Let’s Talk About 

Company Portal 

on macOS
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Main Structure of Company Portal
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Main Structure of Company Portal
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Does Browsercore

Work the Same Way 

on macOS?
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Yes. It Does. 
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Microsoft SSO Chrome extension



Mission: Get the 

PRT Cookie on macOS
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Summary of Cookie Extraction Techniques
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Headless Browser-Based Native Messaging Abuse

Bypassed BrowserCore’s parent process check

Direct SSO Invocation via Apple’s API



Reported to MSRC
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Assessed as low severity; only reported internally to the Product Team

No confirmation on whether the issue will be tracked or fixed

We were not surprised — similar issues have never been patched on Windows

But… 

Confirmed to fix some of our attack methods just two days ago
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But then… Apple contacted us.
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Apple first learned about our research via the TROOPERS

They proactively reached out to us for further clarification

Confirmed they are working on fixing related issues

Acknowledged the issue and said a CVE would be assigned 



Headless 

Browser-Based Native 

Messaging Abuse
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26

Microsoft SSO Chrome extension

Headless Browser-Based Native Messaging Abuse



Headless Browser-Based Native Messaging Abuse
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Launches Chrome in headless mode

Loads the Microsoft SSO Chrome Extension (CRX)

Injects JavaScript to call chrome.runtime.sendNativeMessage

Sends the GetCookies request 

Extracts PRT cookies directly from the extension response
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Headless Browser-Base Method Preconditions
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Victim must be logged into desktop session

Headless browser ≠ no GUI dependencies

Only works on official Chrome, Edge



Summary of Cookie Extraction Techniques
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Headless Browser-Based Native Messaging Abuse

Requires Specific Environment Conditions

Bypassed BrowserCore’s parent process check

Direct SSO Invocation via Apple’s API



Bypassed 

BrowserCore’s parent 

process check
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Full SSO Flow of Browsercore
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We are here!
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So What Happens 

If We Talk to 

Browsercore Directly?
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Create payload.bin
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Running BrowserCore with Our Payload
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It Just Keeps Killing Itself...
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Different from Windows Here
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So... 

What Do the Logs Say?
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Can’t get parent process info.
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41



Whatever, Patch 

Should Fix It Anyway
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IDA time！
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Misson Patch
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Misson Patch
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sub100006968 -> callerCheck()

Get parent info from NSRunningApplication

.runningApplicationWithProcessIdentifier()

Reads bundleIdentifier & localizedName of parent

Compares against internal validProcesses list 

Logs success/failure and returns boolean
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Misson Patch - callerCheck()
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Misson Patch - Done!
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Time to fire 

the payload again!
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Something Happened this time!
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Debug It with LLDB
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Wait......What? 

52
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So… Did We Actually Find our 

First Comprehensive Method?
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Actually...
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Original Mission: 

Get the PRT Cookie

on macOS
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New Mission: 

Get the PRT Cookie

on macOS

as a standard user
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Two Different Callers in SSO Flow
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Caller of BrowserCore

A browser (e.g. Chrome, Edge)  

Parent in the parent process check — and this is the part we patched

Caller of AppSSOAgent

BrowserCore (or a similar implementation by third-party vendors)

Requires CS_VALID or CS_DEBUGGED to retrieve the caller’s Team ID



Reasoning Our Next Move

Our patch seems to work 

But why didn’t LLDB trigger the -6000 error?

Alternatively, we could investigate what -6000 actually means.

Let’s compare the logs and spot the difference.
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Let’s Diff the Logs

61

Success 

Fail



Let’s Diff the Logs
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Fail:

Success:



Codesign of Browsercore_patched
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What are Team ID and Bundle ID?

Team ID is embedded in the Apple Developer certificate

Bundle ID appears in both Info.plist and binary’s code signature

Bundle ID is just a string for identification

Attackers can fake Bundle ID, but not Team ID
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Security Identifier (SID) on Windows
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Original Research: https://i.blackhat.com/Asia-24/Presentations/Asia-24-Chudo-Bypassing-Entra-ID-Conditional-Access-

Like-APT.pdf



Outside the Browsercore
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Outside the Browsercore
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Figure Out the Error

68



We are here!
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Hmm...

70



processSSOAuthorization() 
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Objective-C Message Send 

Method calls are sent as messages at runtime.

Uses objc_msgSend to find the method.

May resolve in current binary or linked frameworks.

If not found, it tries dynamic forwarding.

Can cross into other binaries, not just self-contained.
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Find the Method
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Apple Framework vs. Windows DLL
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We are here!
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Gotcha! 
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Bundle ID Validation Flow
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1. Check if callerBundleIdentifier is nil

2. Blocklist check (AppBlockList + _defaultBundleIdentifierBlockList)

3. Managed app check via Enable_SSO_On_All_ManagedApps

4. Whitelist check (_defaultBundleIdentifierWhiteList)

5. AllowList check (AppAllowList)

6. Prefix allow check (com.microsoft., com.apple.)

7. Default: Deny SSO



browsercore_patched Fail Log
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Bundle ID Validation Flow

80

1. Check if callerBundleIdentifier is nil

2. Blocklist check (AppBlockList + _defaultBundleIdentifierBlockList)

3. Managed app check via Enable_SSO_On_All_ManagedApps

4. Whitelist check (_defaultBundleIdentifierWhiteList)

5. AllowList check (AppAllowList)

6. Prefix allow check (com.microsoft., com.apple.)

7. Default: Deny SSO



So… where do Bundle ID 

& Team ID come from?
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Review the Log
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We are here!
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macOS Kernel & Security

darling-security/sectask/SecTask.c

Wraps system calls into high-level security API 

​(used by apps like BrowserCore)​

darwin-xnu/bsd/kern/kern_proc.c

Low-level process info & validation 

​(PID, audit token, code signature)​

These two layers define who you are in macOS security logic​
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darling-security/sectask/SecTask.c
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darwin-xnu/bsd/kern/kern_proc.c
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Two Different Callers in SSO Flow

88

Caller of BrowserCore

A browser (e.g. Chrome, Edge)  

Parent of the parent process check — and this is the part we patched

Caller of AppSSOAgent

BrowserCore (or a similar implementation by third-party vendors)

Requires CS_VALID or CS_DEBUGGED to retrieve the caller’s Team ID



Bypassing Team ID check is impossible

89

Team ID is cryptographically derived from a valid Apple Developer certificate

Accessing Team ID requires using SecTask APIs

SecTask enforces code signature integrity before returning identity

Debug mode allows access, but requires high privileges

This makes bypassing the Team ID check a total Mission: Impossible.



SSO Flow of Browsercore_patched
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SSO Flow of Browsercore_patched

91

Patch applied



SSO Flow of Browsercore_patched
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Patch applied

Signature invalid



SSO Flow of Browsercore_patched
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Patch applied

Signature invalid

csops_internal() fails



SSO Flow of Browsercore_patched
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callerBundleIdentifier = "(null)";

Patch applied

Signature invalid

csops_internal() fails

Null Bundle ID



SSO Flow of Browsercore_patched
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callerBundleIdentifier = "(null)";

Patch applied

Signature invalid

csops_internal() fails

Null Bundle ID

Reject SSO



It’s Time to Fight 

BrowserCore Directly.

Back to Reverse…
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We’re Back to BrowserCore!
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BrowserCore Parent Check
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BrowserCore Parent White List

100

Format: TeamID + BundleID → hash → added to table

Whitelisted combinations include:

com.google.Chrome, EQHXZ8M8AV

com.microsoft.edgemac, UBF8T346G9

com.microsoft.edgemac.Canary, UBF8T346G9

…



Quick Quiz
What could go wrong here?

101

Get parent process PID

Build codesign command

Execute and capture codesign output

Check if output contains required fields

Validate signature result



Path Interception via PATH 
Environment Variable (T1574.007)
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OS looks through directories in the PATH variable to find executables

Attacker can place a fake binary in a directory listed earlier in PATH

When the program runs, the fake one is executed instead of the real one

Works on Windows, Linux, and macOS



Quick Quiz
What could go wrong here?
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Get parent process PID

Build codesign command

Execute and capture codesign output

Check if output contains required fields

Validate signature result



Fake Codesign
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● Browsercore failed to execute fake codesign

● However, we succeeded in Browsercore_patched!?

● Something’s still missing in the original one 
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Testing Path Interception Failed



Finally We Found the Problem
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Let’s Make 

a Swift GUI app
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Our new attack strategy

1️⃣ Create payload.bin with the crafted request

2️⃣ Build a fake codesign binary that mimics Chrome’s 

signature

3️⃣ Develop a minimal Swift GUI app to act as a running 

application

4️⃣ Launch BrowserCore with the fake app as its parent and 

set PATH=/tmp to redirect the codesign check to our fake binary
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Here Comes Our POC 
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We Did It! 
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1. Validate Parent Process

a. Use `runningApplicationWithProcessIdentifier()` 

to retrieve parent process info  

2. Validate Code Signature of Caller

a. Execute `codesign -dv` to extract the 

Bundle ID and Team ID  

b. Check the result against an 

whitelist hash table of allowed callers  

3. Decide Whether to Proceed  

Caller Validation of Browsercore
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Bypassing Team ID Check is Impossible
Until the implementation goes wrong

112

Team ID is cryptographically derived from a valid Apple Developer certificate

Accessing Team ID requires using SecTask APIs

SecTask enforces code signature integrity before returning identity

Debug mode allows access, but requires high privileges

This makes bypassing the Team ID check a total Mission: Impossible.



Mission: Get the 

PRT Cookie on macOS

as a standard user
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Mission: Get the 

PRT Cookie on macOS

as a standard user
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Summary of Cookie Extraction Techniques

Headless Browser-Based Native Messaging Abuse

Requires Specific Environment Conditions

Bypassed BrowserCore’s parent process check

Direct SSO Invocation via Apple’s API

116



Direct SSO Invocation 

via Apple’s API

117



Unlock the Third Method at DEF CON 33!
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Summary
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Talk 

Summary

PRT Cookie theft on macOS is now a reality, making it 

essential to monitor activities on the platform.

Intune on macOS is enhancing SSO security with new 

verification mechanisms. It's more secure than Windows, but 

bypass methods still exist.

If you are a macOS software developer, avoid using codesign 

to check a binary's signature; instead, use the security 

framework.
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Defense 

Summary

PRT Cookie theft on macOS is now possible, highlighting the 

critical need for continuous monitoring.

Monitor the codesign process; it should be running from /usr/bin.

Verify that browser executions are not being simulated by programs such as 

Python.

Ensure Intune's AppPrefixAllowList and 

AppCookiesSSOAllowList configurations align with expected 

application usage within your organization.

To prevent stolen PRT Cookies from containing an MFA claim, 

consider alternative MFA methods rather than solely relying on 

Platform SSO.
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