
Breaking Down macOS Intune SSO:
PRT Cookie Theft and Platform Comparison

How Primary Refresh Tokens Cookie
Can Be Retrieved on macOS

Shang-De(John) Jiang
Dong-Yi(Kazma) Ye

1

$ whoami

Shang-De ‘John’ Jiang (@SecurityThunder)

Deputy Director of Research at

UCCU Hacker Co-Founder

Blog: HackerPeanutJohn

Speaker at the following technical conferences: BlackHat

USA, CodeBlue, HITCON , HITB, TROOPERS, Sans

Blue Team Summit …

2

$ whoami

Kazma Ye

CTF Player @ B33F50UP

University Student in Taiwan

Security Research Intern @

Founder of Taiwan Security Club & NCKUCTF

AIS3 EOF 2025 – Gold Award (1st Place in Taiwan)

HITCON CTF 2024 – 10th Worldwide / Taiwan Star Award

Speaker / Instructor at SITCON, HITCON, and more

3

Why Research Stealing

macOS PRT Cookie?

4

Why Research Stealing macOS PRT Cookie?

5

Many organizations use Intune as MDM for both Windows and macOS

Conditional Access supported on macOS for Zero Trust enforcement

Existing research and detections focus mostly on Windows

Lack of research on macOS attack surface and exploitation paths

Current macOS detection & assessments are limited

The Research Inspired Us

Olaf Hartong & Dirk-jan Mollema

Yuya Chudo & Takayuki Hatakeyama

PRT Can Exchange Everything We Wanted

7

The PRT Cookie includes
user identity + linked device information

The PRT Cookie includes
user identity + linked device information
PRT Cookie From Device Can

Include MFA Claim + Device Claim

Browser SSO on Windows

10

Original Research: https://i.blackhat.com/Asia-24/Presentations/Asia-24-Chudo-Bypassing-Entra-ID-Conditional-Access-

Like-APT.pdf

Cloud AP:

aadcloudap

CreateSSOCookie

LSASS

LsaCallAuthenticationPackage

GetCookieInfoForUri

call number , payload

Chrome

BrowserCore.exe

MicrosoftAccount

TokenProvider.dll
Nonce

PRT Cookie

Abuse Browser SSO on Windows

Cloud AP:

aadcloudap

CreateSSOCookie

LSASS

LsaCallAuthenticationPackage

GetCookieInfoForUri

A

B

C

RequestAAD

RefreshToken

BAADTokenBroker

Original Research: https://i.blackhat.com/Asia-24/Presentations/Asia-24-Chudo-Bypassing-Entra-ID-Conditional-Access-

Like-APT.pdf

BrowserCore is the

component responsible

for handling browser-

initiated SSO in Windows.

12

How macOS use similar mechanism?

Company Portal on macOS

Ref: https://youtu.be/awckSIpCPMg?si=18uS-Ot0jNSeMpUs

Let’s Talk About

Company Portal

on macOS

15

Main Structure of Company Portal

16

Main Structure of Company Portal

17

Does Browsercore

Work the Same Way

on macOS?

18

Yes. It Does.

19

Microsoft SSO Chrome extension

Mission: Get the

PRT Cookie on macOS

20

Summary of Cookie Extraction Techniques

21

Headless Browser-Based Native Messaging Abuse

Bypassed BrowserCore’s parent process check

Direct SSO Invocation via Apple’s API

Reported to MSRC

22

Assessed as low severity; only reported internally to the Product Team

No confirmation on whether the issue will be tracked or fixed

We were not surprised — similar issues have never been patched on Windows

But…

Confirmed to fix some of our attack methods just two days ago

23

But then… Apple contacted us.

24

Apple first learned about our research via the TROOPERS

They proactively reached out to us for further clarification

Confirmed they are working on fixing related issues

Acknowledged the issue and said a CVE would be assigned

Headless

Browser-Based Native

Messaging Abuse

25

26

Microsoft SSO Chrome extension

Headless Browser-Based Native Messaging Abuse

Headless Browser-Based Native Messaging Abuse

27

Launches Chrome in headless mode

Loads the Microsoft SSO Chrome Extension (CRX)

Injects JavaScript to call chrome.runtime.sendNativeMessage

Sends the GetCookies request

Extracts PRT cookies directly from the extension response

28

Headless Browser-Base Method Preconditions

29

Victim must be logged into desktop session

Headless browser ≠ no GUI dependencies

Only works on official Chrome, Edge

Summary of Cookie Extraction Techniques

30

Headless Browser-Based Native Messaging Abuse

Requires Specific Environment Conditions

Bypassed BrowserCore’s parent process check

Direct SSO Invocation via Apple’s API

Bypassed

BrowserCore’s parent

process check

31

Full SSO Flow of Browsercore

32

We are here!

33

So What Happens

If We Talk to

Browsercore Directly?

34

Create payload.bin

35

Running BrowserCore with Our Payload

36

It Just Keeps Killing Itself...

37

Different from Windows Here

38

So...

What Do the Logs Say?

39

Can’t get parent process info.

40

41

Whatever, Patch

Should Fix It Anyway

42

IDA time！

43

Misson Patch

44

Misson Patch

45

sub100006968 -> callerCheck()

Get parent info from NSRunningApplication

.runningApplicationWithProcessIdentifier()

Reads bundleIdentifier & localizedName of parent

Compares against internal validProcesses list

Logs success/failure and returns boolean

46

Misson Patch - callerCheck()

47

Misson Patch - Done!

48

Time to fire

the payload again!

49

Something Happened this time!

50

Debug It with LLDB

51

Wait......What?

52

53

So… Did We Actually Find our

First Comprehensive Method?

54

Actually...

55

Original Mission:

Get the PRT Cookie

on macOS

56

New Mission:

Get the PRT Cookie

on macOS

as a standard user

57

58

Two Different Callers in SSO Flow

59

Caller of BrowserCore

A browser (e.g. Chrome, Edge)

Parent in the parent process check — and this is the part we patched

Caller of AppSSOAgent

BrowserCore (or a similar implementation by third-party vendors)

Requires CS_VALID or CS_DEBUGGED to retrieve the caller’s Team ID

Reasoning Our Next Move

Our patch seems to work

But why didn’t LLDB trigger the -6000 error?

Alternatively, we could investigate what -6000 actually means.

Let’s compare the logs and spot the difference.

60

Let’s Diff the Logs

61

Success

Fail

Let’s Diff the Logs

62

Fail:

Success:

Codesign of Browsercore_patched

63

What are Team ID and Bundle ID?

Team ID is embedded in the Apple Developer certificate

Bundle ID appears in both Info.plist and binary’s code signature

Bundle ID is just a string for identification

Attackers can fake Bundle ID, but not Team ID

64

Security Identifier (SID) on Windows

65

Original Research: https://i.blackhat.com/Asia-24/Presentations/Asia-24-Chudo-Bypassing-Entra-ID-Conditional-Access-

Like-APT.pdf

Outside the Browsercore

66

Outside the Browsercore

67

Figure Out the Error

68

We are here!

69

Hmm...

70

processSSOAuthorization()

71

Objective-C Message Send

Method calls are sent as messages at runtime.

Uses objc_msgSend to find the method.

May resolve in current binary or linked frameworks.

If not found, it tries dynamic forwarding.

Can cross into other binaries, not just self-contained.

72

Find the Method

73

74

Apple Framework vs. Windows DLL

75

We are here!

76

Gotcha!

77

Bundle ID Validation Flow

78

1. Check if callerBundleIdentifier is nil

2. Blocklist check (AppBlockList + _defaultBundleIdentifierBlockList)

3. Managed app check via Enable_SSO_On_All_ManagedApps

4. Whitelist check (_defaultBundleIdentifierWhiteList)

5. AllowList check (AppAllowList)

6. Prefix allow check (com.microsoft., com.apple.)

7. Default: Deny SSO

browsercore_patched Fail Log

79

Bundle ID Validation Flow

80

1. Check if callerBundleIdentifier is nil

2. Blocklist check (AppBlockList + _defaultBundleIdentifierBlockList)

3. Managed app check via Enable_SSO_On_All_ManagedApps

4. Whitelist check (_defaultBundleIdentifierWhiteList)

5. AllowList check (AppAllowList)

6. Prefix allow check (com.microsoft., com.apple.)

7. Default: Deny SSO

So… where do Bundle ID

& Team ID come from?

81

Review the Log

82

We are here!

83

macOS Kernel & Security

darling-security/sectask/SecTask.c

Wraps system calls into high-level security API

​(used by apps like BrowserCore)​

darwin-xnu/bsd/kern/kern_proc.c

Low-level process info & validation

​(PID, audit token, code signature)​

These two layers define who you are in macOS security logic​

84

darling-security/sectask/SecTask.c

85

86

darwin-xnu/bsd/kern/kern_proc.c

87

Two Different Callers in SSO Flow

88

Caller of BrowserCore

A browser (e.g. Chrome, Edge)

Parent of the parent process check — and this is the part we patched

Caller of AppSSOAgent

BrowserCore (or a similar implementation by third-party vendors)

Requires CS_VALID or CS_DEBUGGED to retrieve the caller’s Team ID

Bypassing Team ID check is impossible

89

Team ID is cryptographically derived from a valid Apple Developer certificate

Accessing Team ID requires using SecTask APIs

SecTask enforces code signature integrity before returning identity

Debug mode allows access, but requires high privileges

This makes bypassing the Team ID check a total Mission: Impossible.

SSO Flow of Browsercore_patched

90

SSO Flow of Browsercore_patched

91

Patch applied

SSO Flow of Browsercore_patched

92

Patch applied

Signature invalid

SSO Flow of Browsercore_patched

93

Patch applied

Signature invalid

csops_internal() fails

SSO Flow of Browsercore_patched

94

callerBundleIdentifier = "(null)";

Patch applied

Signature invalid

csops_internal() fails

Null Bundle ID

SSO Flow of Browsercore_patched

95

callerBundleIdentifier = "(null)";

Patch applied

Signature invalid

csops_internal() fails

Null Bundle ID

Reject SSO

It’s Time to Fight

BrowserCore Directly.

Back to Reverse…

96

We’re Back to BrowserCore!

97

98

BrowserCore Parent Check

99

BrowserCore Parent White List

100

Format: TeamID + BundleID → hash → added to table

Whitelisted combinations include:

com.google.Chrome, EQHXZ8M8AV

com.microsoft.edgemac, UBF8T346G9

com.microsoft.edgemac.Canary, UBF8T346G9

…

Quick Quiz
What could go wrong here?

101

Get parent process PID

Build codesign command

Execute and capture codesign output

Check if output contains required fields

Validate signature result

Path Interception via PATH
Environment Variable (T1574.007)

102

OS looks through directories in the PATH variable to find executables

Attacker can place a fake binary in a directory listed earlier in PATH

When the program runs, the fake one is executed instead of the real one

Works on Windows, Linux, and macOS

Quick Quiz
What could go wrong here?

103

Get parent process PID

Build codesign command

Execute and capture codesign output

Check if output contains required fields

Validate signature result

Fake Codesign

104

● Browsercore failed to execute fake codesign

● However, we succeeded in Browsercore_patched!?

● Something’s still missing in the original one

105

Testing Path Interception Failed

Finally We Found the Problem

106

Let’s Make

a Swift GUI app

107

Our new attack strategy

1️⃣ Create payload.bin with the crafted request

2️⃣ Build a fake codesign binary that mimics Chrome’s

signature

3️⃣ Develop a minimal Swift GUI app to act as a running

application

4️⃣ Launch BrowserCore with the fake app as its parent and

set PATH=/tmp to redirect the codesign check to our fake binary

108

Here Comes Our POC

109

We Did It!

110

1. Validate Parent Process

a. Use `runningApplicationWithProcessIdentifier()`

to retrieve parent process info

2. Validate Code Signature of Caller

a. Execute `codesign -dv` to extract the

Bundle ID and Team ID

b. Check the result against an

whitelist hash table of allowed callers

3. Decide Whether to Proceed

Caller Validation of Browsercore

111

Bypassing Team ID Check is Impossible
Until the implementation goes wrong

112

Team ID is cryptographically derived from a valid Apple Developer certificate

Accessing Team ID requires using SecTask APIs

SecTask enforces code signature integrity before returning identity

Debug mode allows access, but requires high privileges

This makes bypassing the Team ID check a total Mission: Impossible.

Mission: Get the

PRT Cookie on macOS

as a standard user

114

Mission: Get the

PRT Cookie on macOS

as a standard user

115

Summary of Cookie Extraction Techniques

Headless Browser-Based Native Messaging Abuse

Requires Specific Environment Conditions

Bypassed BrowserCore’s parent process check

Direct SSO Invocation via Apple’s API

116

Direct SSO Invocation

via Apple’s API

117

Unlock the Third Method at DEF CON 33!

118

Summary

119

Talk

Summary

PRT Cookie theft on macOS is now a reality, making it

essential to monitor activities on the platform.

Intune on macOS is enhancing SSO security with new

verification mechanisms. It's more secure than Windows, but

bypass methods still exist.

If you are a macOS software developer, avoid using codesign

to check a binary's signature; instead, use the security

framework.

120

Defense

Summary

PRT Cookie theft on macOS is now possible, highlighting the

critical need for continuous monitoring.

Monitor the codesign process; it should be running from /usr/bin.

Verify that browser executions are not being simulated by programs such as

Python.

Ensure Intune's AppPrefixAllowList and

AppCookiesSSOAllowList configurations align with expected

application usage within your organization.

To prevent stolen PRT Cookies from containing an MFA claim,

consider alternative MFA methods rather than solely relying on

Platform SSO.

121

Thanks

These

Awesome

Researchers

Olaf Hartong (@olafhartong) / X

Dirk-jan Mollema (@_dirkjan) / X

Yuya Chudo (@TEMP43487580) / X

Takayuki Hatakeyama

Henry Huang at CyCraft

Empower cybersecurity with innovative AI technology

Thank You

	Slide 1: 🍪 Breaking Down macOS Intune SSO: PRT Cookie Theft and Platform Comparison
	Slide 2: $ whoami
	Slide 3: $ whoami
	Slide 4: Why Research Stealing macOS PRT Cookie? 🍪
	Slide 5: Why Research Stealing macOS PRT Cookie?
	Slide 6: The Research Inspired Us
	Slide 7: PRT Can Exchange Everything We Wanted
	Slide 8: The PRT Cookie includes user identity + linked device information
	Slide 9: The PRT Cookie includes user identity + linked device information
	Slide 10: Browser SSO on Windows
	Slide 11: Abuse Browser SSO on Windows
	Slide 12: BrowserCore is the component responsible for handling browser-initiated SSO in Windows.
	Slide 13: How macOS use similar mechanism?
	Slide 14: Company Portal on macOS
	Slide 15: Let’s Talk About Company Portal on macOS
	Slide 16: Main Structure of Company Portal
	Slide 17: Main Structure of Company Portal
	Slide 18: Does Browsercore Work the Same Way on macOS?
	Slide 19: Yes. It Does. ✅
	Slide 20: 😼 Mission: Get the PRT Cookie on macOS
	Slide 21: Summary of Cookie Extraction Techniques
	Slide 22: Reported to MSRC
	Slide 23
	Slide 24: But then… Apple contacted us.
	Slide 25: Headless Browser-Based Native Messaging Abuse
	Slide 26: Headless Browser-Based Native Messaging Abuse
	Slide 27: Headless Browser-Based Native Messaging Abuse
	Slide 28
	Slide 29: Headless Browser-Base Method Preconditions
	Slide 30: Summary of Cookie Extraction Techniques
	Slide 31: Bypassed BrowserCore’s parent process check
	Slide 32: Full SSO Flow of Browsercore
	Slide 33: We are here!
	Slide 34: So What Happens If We Talk to Browsercore Directly?
	Slide 35: Create payload.bin
	Slide 36: Running BrowserCore with Our Payload
	Slide 37: It Just Keeps Killing Itself...
	Slide 38: Different from Windows Here
	Slide 39: 🧐 So... What Do the Logs Say?
	Slide 40: Can’t get parent process info.
	Slide 41: Huh?
	Slide 42: 😼 Whatever, Patch Should Fix It Anyway
	Slide 43: IDA time！
	Slide 44: Misson Patch
	Slide 45: Misson Patch
	Slide 46: sub100006968 -> callerCheck()
	Slide 47: Misson Patch - callerCheck()
	Slide 48: Misson Patch - Done!
	Slide 49: ⏰ Time to fire the payload again!
	Slide 50: 😲 Something Happened this time!
	Slide 51: Debug It with LLDB
	Slide 52: Wait......What? 🤯
	Slide 53
	Slide 54: So… Did We Actually Find our First Comprehensive Method?
	Slide 55: Actually...☹️
	Slide 56: Original Mission: Get the PRT Cookie on macOS
	Slide 57: New Mission: Get the PRT Cookie on macOS as a standard user
	Slide 58
	Slide 59: Two Different Callers in SSO Flow
	Slide 60: Reasoning Our Next Move
	Slide 61: Let’s Diff the Logs
	Slide 62: Let’s Diff the Logs
	Slide 63: Codesign of Browsercore_patched
	Slide 64: What are Team ID and Bundle ID?
	Slide 65: Security Identifier (SID) on Windows
	Slide 66: Outside the Browsercore
	Slide 67: Outside the Browsercore
	Slide 68: Figure Out the Error
	Slide 69: We are here!
	Slide 70: Hmm...🧐
	Slide 71: processSSOAuthorization() 🔐
	Slide 72: Objective-C Message Send
	Slide 73: Find the Method
	Slide 74
	Slide 75: Apple Framework vs. Windows DLL
	Slide 76: We are here!
	Slide 77: Gotcha! 😎
	Slide 78: Bundle ID Validation Flow
	Slide 79: browsercore_patched Fail Log
	Slide 80: Bundle ID Validation Flow
	Slide 81: 🤔 So… where do Bundle ID & Team ID come from?
	Slide 82: Review the Log
	Slide 83: We are here!
	Slide 84: macOS Kernel & Security
	Slide 85: darling-security/sectask/SecTask.c
	Slide 86
	Slide 87: darwin-xnu/bsd/kern/kern_proc.c
	Slide 88: Two Different Callers in SSO Flow
	Slide 89: Bypassing Team ID check is impossible
	Slide 90: SSO Flow of Browsercore_patched
	Slide 91
	Slide 92
	Slide 93
	Slide 94
	Slide 95: SSO Flow of Browsercore_patched
	Slide 96: It’s Time to Fight BrowserCore Directly. Back to Reverse…
	Slide 97: We’re Back to BrowserCore!
	Slide 98: ???
	Slide 99: BrowserCore Parent Check
	Slide 100: BrowserCore Parent White List
	Slide 101: 💡 Quick Quiz What could go wrong here?
	Slide 102: Path Interception via PATH Environment Variable (T1574.007)
	Slide 103: 💡 Quick Quiz What could go wrong here?
	Slide 104: Fake Codesign
	Slide 105: ❌ Browsercore failed to execute fake codesign ✅ However, we succeeded in Browsercore_patched!? 🔍 Something’s still missing in the original one
	Slide 106: Finally We Found the Problem
	Slide 107: 😼 Let’s Make a Swift GUI app
	Slide 108: Our new attack strategy
	Slide 109: Here Comes Our POC 💥
	Slide 110: We Did It!
	Slide 111: Validate Parent Process Use `runningApplicationWithProcessIdentifier()` to retrieve parent process info Validate Code Signature of Caller Execute `codesign -dv` to extract the Bundle ID and Team ID Check the result against an whitelist h
	Slide 112: Bypassing Team ID Check is Impossible Until the implementation goes wrong
	Slide 114: 😼 Mission: Get the PRT Cookie on macOS as a standard user
	Slide 115: 😼 Mission: Get the PRT Cookie on macOS as a standard user
	Slide 116: Summary of Cookie Extraction Techniques
	Slide 117: Direct SSO Invocation via Apple’s API
	Slide 118: Unlock the Third Method at DEF CON 33!
	Slide 119: Summary
	Slide 120: Talk Summary
	Slide 121: Defense Summary
	Slide 122: Thanks These Awesome Researchers
	Slide 123: Thank You

