
Cooperation:

Building Zero Trust Architecture
in Public Health
Gesundheitsamt Frankfurt am Main, cronn, ERNW

26/06/2025 – TROOPERS Heidelberg

Cooperation:

1. Introduction & Project Context

2. GA-Lotse Architecture and Zero Trust

3. Secure Software Development Life-cycle

4. Implementation & Testing

5. Conclusion

Agenda

2

Cooperation:

Introduction

3

Bianca Kastl
Gesundheitsamt Frankfurt

Product Owner “GA-Lotse”

Sven Nobis
ERNW Enno Rey Netzwerke GmbH

Security Consulting

Benedikt Waldvogel
cronn GmbH

Lead Software Architect

Cooperation:

Usually data with a high to very high protection level (Art. 9 GDPR)

Most of the time Personally Identifiable Information (PII)

Sometimes anonymous data because of discrimination risk (HIV)

Sometimes even more secured data (socio-psychiatric service)

Project Context and Challenges

4

Cooperation:

Learnings from the pandemic

IT and workplace has to be more flexible

Remote and mobile work becomes more important

→ Zero Trust a new security paradigm that enables a modern workplace

Vision

5

Cooperation:
6

Cooperation:

Entire project is funded by public money with around 23 million Euro

Funding requirements enforce high bar of data protection and security

15% of the budget must be assigned to security and data protection

Great opportunity to do security the right way from the start

Financial Backing

7

Cooperation:

Security by Design and Default (not just as a buzzword)

→ Dedicated security team for the entire project

→ Dedicated testing team on top of team internal testing

Privacy by Design (not just as a buzzword)

Open Source from the beginning

Guiding Principles

8

Cooperation:

Team Structure

9

Test Security

UX / UI Scrum

9 Business module teams Cross sectional teams

Data
exchange

A

Base
module

B

Base
module

C

Base
module

D

Business
module

E

Business
module

F

Business
module

G

Business
module

H

Business
module

I

Cooperation:

Minimal privileges – “never trust, always verify”

There is no “safe environment” anymore

“Assume Breach”

A breach at some time is unavoidable – design systems with a small
“blast radius”

Zero Trust Definition

10

Cooperation:

Zero Trust Architecture – Segmentation Into Tenants

11

Cooperation:

Zero Trust Architecture – Segmentation Into Modules

12

Cooperation:

Zero Trust Architecture – Service Mesh (SPATZ)

13

Cooperation:

Policy Decision & Enforcements Points

14

GA-Lotse

Reverse Proxy
SPATZ

NextJS

Delivers Stateless ContentBrowser

Frontend

SPATZ

Module A

PEP Logic

PDP

SPATZ

Auth Module

PDP

PEP

SPATZ

Module B

PEP Logic

PDP

Cooperation:

How did we get to this secure architecture?

How did we ensure that ...

…the design has no flaws?

...the implementation of this architecture is secure and accurate?

And when should it be done in the development process?

And finally, what challenges did we have?

Security in the Software Development Process

15

Cooperation:

Secure Software Development Life Cycle (SSDLC)

16

•Compliance with
•BSI IT

Grundschutzkompendium
•TR-03161

• Risk Assessment

Requirements

•Threat Modeling
•Design Review
•Secure by Design

•Software Architecture
•Privacy by Design

Design
•Secure Coding
•Static Application Security

Testing (SAST)
•Dynamic Application Security

Testing (DAST)
•Code Review

Development

•Security Testing through
•Pentests
•Testing Security with Code

Testing
•Platform Security (K8s)
•Container Security
•Secure by default

configuration

Deployment

Cooperation:

•Compliance with
•BSI IT

Grundschutzkompendium
•TR-03161

• Risk Assessment

Requirements

•Threat Modeling
•Design Review
•Secure by Design

•Software Architecture
•Privacy by Design

Design
•Secure Coding
•Static Application Security

Testing (SAST)
•Dynamic Application Security

Testing (DAST)
•Code Review

Development

•Security Testing through
•Pentests
•Testing Security with Code

Testing
•Platform Security (K8s)
•Container Security
•Secure by default

configuration

Deployment

Secure Software Development Life Cycle
→ Secure by Design

17

Cooperation:
18

Software Architecture (Recap)

Browser

Auth Service

Reverse Proxy

Business Module 1

Business Module 2

Business Module 3

Base Module

Frontend Server

HTTPS mTLS

m
TL

S
m

TL
S

Microservices

Kubernetes

REST / mTLS

Cooperation:

Team Autonomy

19

Reusability!

Unified Tech Stack

Dilemma: Autonomy vs.
Centralisation

“hybrid” microservice
architecture

Regular consultation
between tech leads

Learning:“9 teams develop

9 solutions

for 1 problem”

Enforce rules using ArchUnit!

Why?

Cooperation:

Tech Stack

20

Build & Code Quality

Infrastructure

Testing

Database

Backend

Frontend React TypeScript Next.js Joy UI

Java Spring Boot Hibernate

PostgreSQL Liquibase Redis

Docker Kubernetes Keycloak

TestcontainersPlaywright VitestJUnit

Gradle Prettier ESLint SpotlessArchUnitGitLab CI/CD

REST OpenAPI

Cooperation:

Security is only one piece of the puzzle

We often fixate on CVEs, but library without maintainers is an equal risk!

Maintenance & Community

Who’s behind it? Vendor‐backed or volunteer?

Is it alive? Release cadence, open PRs/issues, roadmap

How long does it exist?

Example: Spring Boot (enterprise stability) vs Next.js (rapid-iterations)

Developer Experience (DX) often drives decisions

Choosing the Tech Stack

21

Cooperation:

Me (developer)

“Cool: Spring + Hibernate + a DB.
Lets slam in those school entry examinations.
We store person references, how hard can it be? ”

Bianca

“Whoa there… remember ‘Privacy by Design’:
We don’t store anything that lets us actually identify the kiddos ”

Developer Plans vs Privacy Demands

22

Cooperation:

•Compliance with
•BSI IT

Grundschutzkompendium
•TR-03161

• Risk Assessment

Requirements

•Threat Modeling
•Design Review
•Secure by Design

•Software Architecture
•Privacy by Design

Design
•Secure Coding
•Static Application Security

Testing (SAST)
•Dynamic Application

Security Testing (DAST)
•Code Review

Development

•Security Testing through
•Pentests
•Testing Security with Code

Testing
•Platform Security (K8s)
•Container Security
•Secure by default

configuration

Deployment

Secure Software Development Life Cycle
→ Privacy by Design

23

Cooperation:

Privacy by Design: Implementation Challenges (1)

24

Case Study: Central File

ID Firstname Lastname

1 Maria Schmidt

2 Robert Schmidt

3 Emma Schmidt

4 Toni Schmidt

Child ID Parent 1 Parent 2 Height
[m]

Weight
[kg]

Language Proficiency

3 1 2 1,15 20,5 Excellent

4 1 2 1,20 24,3 Good

Base Module School Entry Module

Cooperation:

Privacy by Design: Implementation Challenges (2)

25

Case specific IDs

ID Firstname Lastname

6d28 Maria Schmidt

529e Robert Schmidt

91e9 Emma Schmidt

1762 Toni Schmidt

Child ID Parent 1 Parent 2 Height
[m]

[…]

b920 a186 32f6 1,15 …

d514 514d ea59 1,20 …

Base Module School Entry Module

Person ID Case ID

6d28 a186

6d28 514d

529e 32f6

529e ea59

91e9 b920

1762 d514

Cooperation:

Privacy by Design: Implementation Challenges (3)

26

Zero Trust

Attacker with access to school entry DB cannot correlate to real persons

No (local) DB JOINs!
→ Remote JOINS via REST requests

→ Bulk Processing

Must be implemented from day one

Cooperation:

•Compliance with
•BSI IT

Grundschutzkompendium
•TR-03161

• Risk Assessment

Requirements

•Threat Modeling
•Design Review
•Secure by Design

•Software Architecture

Design
•Secure Coding
•Static Application Security

Testing (SAST)
•Dynamic Application

Security Testing (DAST)
•Code Review

Development

•Security Testing through
•Pentests
•Testing Security with Code

Testing
•Platform Security (K8s)
•Container Security
•Secure by default

configuration

Deployment

Secure Software Development Life Cycle
→ Threat Modeling

27

Cooperation:

High-level goal: Get a common understanding of the IT security threats in GA-Lotse

Step 1: Evaluate the threats
“What can go wrong?” → threats
Use case approach: What can a malicious actor do?

Step 2: Try to mitigate the risks
“What are we going to do about it?”

→ Security by Design, implementation

Step 3: Are the mitigations effective?
“Did we do a good enough job?”

→ Code review, security testing: Pentests, security test cases

No goal: domain-agnostic threats (e.g., SQLi, XSS)
Focus is of our TM workshop was: domain-specific threats

Threat Modeling 101

28

Cooperation:

High-Level Threat Model

Using STRIDE

Use Case Threat Model

Use Case → Abuse Case

Case Study: School Entry

Threat Model in GA-Lotse

29

School Entry
Module

Citizen
Employee

Base
Module

S. Entry DB

TB4

TB3

TB1

Doctor /
Medical

Assistant

TB2

Cooperation:

Case Study: School Entry
Background: Use Cases (Simplified)

30

School Entry Module

Citizen

Employee
Health

Department

Doctor /
Medical
assistant

Book
Appointment

Examination

Reschedule
Appointment

Do Self-
Anamnesis

...

Cooperation:

Case Study: Self-Anamnesis
Abuse Cases

31

Domain-Specific Threats

#1 Attacker finds the invitation envelope in the trash. They use the
QR code to access the information provided by the citizen.

Mitigation #1: API accepts anamnesis data but does not
reveal any data

Mitigation #2: Birthday as a second factor (more secure 2nd
factors were discussed by not feasible)

#2 Attacker has access to the citizen's device after they did the
anamnesis.

…

#3 Attacker finds the invitation envelope in the trash. They use the
QR code to manipulate data.

…

...

Domain-Agnostic Threats

Spoofing

Brute forcing

Session stealing

Tampering

Cross-Site Scripting (XSS)

Cross-site request forgery
(CSRF)

SQL-Injection, *-Injection

Repudiation

…

Information disclosure

…

Cooperation:

•Compliance with
•BSI IT

Grundschutzkompendium
•TR-03161

• Risk Assessment

Requirements

•Threat Modeling
•Design Review
•Secure by Design

•Software Architecture
•Privacy by Design

Design
•Secure Coding
•Static Application Security

Testing (SAST)
•Dynamic Application

Security Testing (DAST)
•Code Review

Development

•Security Testing through
•Pentests
•Testing Security with Code

Testing
•Platform Security (K8s)
•Container Security
•Secure by default

configuration

Deployment

Secure Software Development Life Cycle
→ Secure by Design

32

Cooperation:

Strong focus on integration tests: Test services together, not in isolation

Gradle-driven automation: Build & launch required services per test run

Backend: JUnit integration tests via REST APIs

End-to-end tests: Playwright drives a real browser against the UI

Testing Approach

33

Playwright Browser
drives

Frontend Server

Business Module 1

Base Module

Business Module 2

Reverse Proxy

Cooperation:

Many integration tests
720 E2E test scenarios
10 000 backend integration tests

Some unit tests & static checks

Few component tests

(Almost) no mocking

Why?
Spring service/component tests are
maintenance nightmare during
refactorings

Testing Trophy Instead of Pyramid

34

E2E & Integration
Tests

Component
Tests

Unit Tests
Static Tests

Cooperation:

Aka Snapshot Testing

Reveals unintended side-effects

Good fit for security tests

Testing: Validation Files

35

@Test
void testNotAuthenticated() {
 CreateProcedureRequest request = new CreateProcedureRequest(…);

 ResponseEntity<String> response =
 testRestTemplate.postForEntity("/school-entries", request, String.class);

 assertThat(response.getStatusCode()).isEqualTo(HttpStatus.UNAUTHORIZED);
 assertHeadersWithFile(response);
}

Cache-Control: [no-cache, no-store, max-age=0, must-revalidate]
Cross-Origin-Opener-Policy: [same-origin]
Cross-Origin-Resource-Policy: [same-origin]
Expires: [0]
Pragma: [no-cache]
Strict-Transport-Security: [max-age=31536000 ; includeSubDomains]
Transfer-Encoding: [chunked]
WWW-Authenticate: [Bearer]
X-Content-Type-Options: [nosniff]
X-Frame-Options: [DENY]

data/test/validation/testNotAuthenticated_headers.txt

Cooperation:

Security Testing (1)

36

@Test
void testLogin() {
 HttpCookie sessionIdCookie =
 loginAndAssertResponsesWithValidationFile("/some-path");
 assertRedisSessionStateWithFile(sessionIdCookie);
}

Cache-Control: [no-cache, no-store, max-age=0, must-revalidate]
Content-Length: [0]
Cross-Origin-Opener-Policy: [same-origin]
Cross-Origin-Resource-Policy: [same-origin]
Expires: [0]
Location: [https://upstream-host:12345/auth/keycloak]
Pragma: [no-cache]
Set-Cookie: [SESSION=[MASKED]; Path=/; Secure; HttpOnly;
SameSite=Lax]
Strict-Transport-Security: [max-age=31536000 ; includeSubDomains]

data/test/validation/testLogin_initialRedirect.txt

https://upstream-host:12345/auth/keycloak

Cooperation:

Security Testing (2)

37

class SchoolEntryAuthorizationTest extends AbstractSpringBootTest implements AuthorizationTestTraits {

 @Autowired
 @Qualifier(AuthorizationTestUtil.REQUEST_MAPPING_HANDLER_MAPPING_BEAN_NAME)
 private RequestMappingHandlerMapping requestMapping;

 @Test
 void testEndpointAuthorization() {
 testEndpointAuthorization(testRestTemplate, requestMapping);
 }
}

data/test/validation/testEndpointAuthorization.md

METHOD URL ALLOWED_ROLES

DELETE /appointment-blocks/1 SCHOOL_ENTRY_ADMIN

GET /appointment-blocks/appointment-block-groups
PROCEDURE_ARCHIVE
SCHOOL_ENTRY_ADMIN

POST /appointment-blocks/daily-appointment-block-groups SCHOOL_ENTRY_ADMIN

POST /appointment-blocks/daily-appointment-block-groups/validate SCHOOL_ENTRY_ADMIN

[…]

Spring MVC Bean

Cooperation:

•Compliance with
•BSI IT

Grundschutzkompendium
•TR-03161

• Risk Assessment

Requirements

•Threat Modeling
•Design Review
•Secure by Design

•Software Architecture
•Privacy by Design

Design
•Secure Coding
•Static Application Security

Testing (SAST)
•Dynamic Application

Security Testing (DAST)
•Code Review

Development

•Security Testing through
•Pentests
•Testing Security with Code

Testing
•Platform Security (K8s)
•Container Security
•Secure by default

configuration

Deployment

Secure Software Development Life Cycle

38

Cooperation:

Creating better and more secure products is possible through a consistent
Shift left approach and Zero Trust

Security problems that are found late in the project are very expensive

Conclusion

39

Cooperation:

Bianca Kastl
Gesundheitsamt Frankfurt

bianca.kastl@stadt-frankfurt.de

Benedikt Waldvogel
cronn GmbH

benedikt.waldvogel@cronn.de

Sven Nobis

ERNW Enno Rey Netzwerke GmbH

snobis@ernw.de

40

Contact

https://gitlab.opencode.de/ga-lotse

mailto:bianca.kastl@stadt-frankfurt.de
mailto:benedikt.waldvogel@cronn.de
mailto:snobis@ernw.de
https://gitlab.opencode.de/ga-lotse

	Introduction
	Folie 1
	Folie 2: Agenda

	Introduction
	Folie 3
	Folie 4: Project Context and Challenges
	Folie 5: Vision
	Folie 6
	Folie 7: Financial Backing
	Folie 8: Guiding Principles
	Folie 9: Team Structure

	Architecture
	Folie 10: Zero Trust Definition
	Folie 11: Zero Trust Architecture – Segmentation Into Tenants
	Folie 12: Zero Trust Architecture – Segmentation Into Modules
	Folie 13: Zero Trust Architecture – Service Mesh (SPATZ)
	Folie 14: Policy Decision & Enforcements Points

	SSDLC
	Folie 15: Security in the Software Development Process
	Folie 16: Secure Software Development Life Cycle (SSDLC)

	Implementation
	Folie 17: Secure Software Development Life Cycle  Secure by Design
	Folie 18
	Folie 19: Team Autonomy
	Folie 20: Tech Stack
	Folie 21: Choosing the Tech Stack
	Folie 22: Developer Plans vs Privacy Demands
	Folie 23: Secure Software Development Life Cycle  Privacy by Design
	Folie 24: Privacy by Design: Implementation Challenges (1)
	Folie 25: Privacy by Design: Implementation Challenges (2)
	Folie 26: Privacy by Design: Implementation Challenges (3)
	Folie 27: Secure Software Development Life Cycle  Threat Modeling
	Folie 28: Threat Modeling 101
	Folie 29: Threat Model in GA-Lotse
	Folie 30: Case Study: School Entry Background: Use Cases (Simplified)
	Folie 31: Case Study: Self-Anamnesis Abuse Cases
	Folie 32: Secure Software Development Life Cycle  Secure by Design
	Folie 33: Testing Approach
	Folie 34: Testing Trophy Instead of Pyramid
	Folie 35: Testing: Validation Files
	Folie 36: Security Testing (1)
	Folie 37: Security Testing (2)
	Folie 38: Secure Software Development Life Cycle

	Conclusion
	Folie 39: Conclusion
	Folie 40

