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Usually data with a high to very high protection level (Art. 9 GDPR)

Most of the time Personally Identifiable Information (PII)

Sometimes anonymous data because of discrimination risk (HIV)

Sometimes even more secured data (socio-psychiatric service)

Project Context and Challenges
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Learnings from the pandemic

IT and workplace has to be more flexible

Remote and mobile work becomes more important

→ Zero Trust a new security paradigm that enables a modern workplace

Vision
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Entire project is funded by public money with around 23 million Euro

Funding requirements enforce high bar of data protection and security

15% of the budget must be assigned to security and data protection

Great opportunity to do security the right way from the start

Financial Backing
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Security by Design and Default (not just as a buzzword)

→ Dedicated security team for the entire project 

→ Dedicated testing team on top of team internal testing

Privacy by Design (not just as a buzzword)

Open Source from the beginning

Guiding Principles
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Team Structure
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Minimal privileges – “never trust, always verify”

There is no “safe environment” anymore

“Assume Breach”

A breach at some time is unavoidable – design systems with a small 
“blast radius”

Zero Trust Definition
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Zero Trust Architecture – Segmentation Into Tenants 
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Zero Trust Architecture – Segmentation Into Modules
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Zero Trust Architecture – Service Mesh (SPATZ)
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Policy Decision & Enforcements Points 
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How did we get to this secure architecture?

How did we ensure that ...

…the design has no flaws?

...the implementation of this architecture is secure and accurate?

And when should it be done in the development process?

And finally, what challenges did we have?

Security in the Software Development Process
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Secure Software Development Life Cycle (SSDLC)
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Team Autonomy
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Reusability!

Unified Tech Stack

Dilemma: Autonomy vs. 
Centralisation

“hybrid” microservice 
architecture

Regular consultation 
between tech leads

Learning:“9 teams develop

9 solutions

for 1 problem”

Enforce rules using ArchUnit!

Why?
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Tech Stack
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Build & Code Quality 

Infrastructure

Testing

Database

Backend

Frontend React TypeScript Next.js Joy UI

Java Spring Boot Hibernate

PostgreSQL Liquibase Redis

Docker Kubernetes Keycloak

TestcontainersPlaywright VitestJUnit

Gradle Prettier ESLint SpotlessArchUnitGitLab CI/CD

REST OpenAPI
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Security is only one piece of the puzzle

We often fixate on CVEs, but library without maintainers is an equal risk!

Maintenance & Community

Who’s behind it? Vendor‐backed or volunteer?

Is it alive? Release cadence, open PRs/issues, roadmap

How long does it exist?

Example: Spring Boot (enterprise stability) vs Next.js (rapid-iterations)

Developer Experience (DX) often drives decisions

Choosing the Tech Stack
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Me (developer)

“Cool: Spring + Hibernate + a DB.
Lets slam in those school entry examinations.
We store person references, how hard can it be? ”

Bianca

“Whoa there… remember ‘Privacy by Design’:
We don’t store anything that lets us actually identify the kiddos ”

Developer Plans vs Privacy Demands
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Privacy by Design: Implementation Challenges (1)
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Case Study: Central File

ID Firstname Lastname

1 Maria Schmidt

2 Robert Schmidt

3 Emma Schmidt

4 Toni Schmidt

Child ID Parent 1 Parent 2 Height
[m]

Weight
[kg]

Language Proficiency

3 1 2 1,15 20,5 Excellent

4 1 2 1,20 24,3 Good

Base Module School Entry Module
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Privacy by Design: Implementation Challenges (2)

25

Case specific IDs

ID Firstname Lastname

6d28 Maria Schmidt

529e Robert Schmidt

91e9 Emma Schmidt

1762 Toni Schmidt

Child ID Parent 1 Parent 2 Height
[m]

[…]

b920 a186 32f6 1,15 …

d514 514d ea59 1,20 …

Base Module School Entry Module

Person ID Case ID

6d28 a186

6d28 514d

529e 32f6

529e ea59

91e9 b920

1762 d514
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Privacy by Design: Implementation Challenges (3)
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Zero Trust

Attacker with access to school entry DB cannot correlate to real persons

No (local) DB JOINs!
→ Remote JOINS via REST requests

→ Bulk Processing

Must be implemented from day one
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High-level goal: Get a common understanding of the IT security threats in GA-Lotse

Step 1: Evaluate the threats
“What can go wrong?” → threats
Use case approach: What can a malicious actor do?

Step 2: Try to mitigate the risks
“What are we going to do about it?”

→ Security by Design, implementation

Step 3: Are the mitigations effective?
“Did we do a good enough job?”

→ Code review, security testing: Pentests, security test cases

No goal: domain-agnostic threats (e.g., SQLi, XSS)
Focus is of our TM workshop was: domain-specific threats 

Threat Modeling 101
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High-Level Threat Model

Using STRIDE

Use Case Threat Model

Use Case → Abuse Case 

Case Study: School Entry

Threat Model in GA-Lotse
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Case Study: School Entry
Background: Use Cases (Simplified)
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School Entry Module

Citizen

Employee
Health 

Department

Doctor / 
Medical 
assistant 

Book 
Appointment

Examination

Reschedule
Appointment

Do Self-
Anamnesis

...
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Case Study: Self-Anamnesis
Abuse Cases
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Domain-Specific Threats

#1 Attacker finds the invitation envelope in the trash. They use the 
QR code to access the information provided by the citizen.

Mitigation #1: API accepts anamnesis data but does not 
reveal any data

Mitigation #2: Birthday as a second factor (more secure 2nd 
factors were discussed by not feasible)

#2 Attacker has access to the citizen's device after they did the 
anamnesis.

…

#3 Attacker finds the invitation envelope in the trash. They use the 
QR code to manipulate data.

…

...

Domain-Agnostic Threats

Spoofing

Brute forcing

Session stealing

Tampering

Cross-Site Scripting (XSS)

Cross-site request forgery 
(CSRF)

SQL-Injection, *-Injection

Repudiation

…

Information disclosure

…
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Strong focus on integration tests: Test services together, not in isolation

Gradle-driven automation: Build & launch required services per test run

Backend: JUnit integration tests via REST APIs

End-to-end tests: Playwright drives a real browser against the UI

Testing Approach

33

Playwright Browser
drives

Frontend Server

Business Module 1

Base Module

Business Module 2

Reverse Proxy
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Many integration tests
720 E2E test scenarios
10 000 backend integration tests

Some unit tests & static checks

Few component tests

(Almost) no mocking

Why?
Spring service/component tests are 
maintenance nightmare during 
refactorings

Testing Trophy Instead of Pyramid
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E2E & Integration 
Tests

Component
Tests

Unit Tests
Static Tests
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Aka Snapshot Testing

Reveals unintended side-effects

Good fit for security tests

Testing: Validation Files
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@Test
void testNotAuthenticated() {
  CreateProcedureRequest request = new CreateProcedureRequest(…);

  ResponseEntity<String> response =
      testRestTemplate.postForEntity("/school-entries", request, String.class);

 assertThat(response.getStatusCode()).isEqualTo(HttpStatus.UNAUTHORIZED);
  assertHeadersWithFile(response);
}

Cache-Control: [no-cache, no-store, max-age=0, must-revalidate]
Cross-Origin-Opener-Policy: [same-origin]
Cross-Origin-Resource-Policy: [same-origin]
Expires: [0]
Pragma: [no-cache]
Strict-Transport-Security: [max-age=31536000 ; includeSubDomains]
Transfer-Encoding: [chunked]
WWW-Authenticate: [Bearer]
X-Content-Type-Options: [nosniff]
X-Frame-Options: [DENY]

data/test/validation/testNotAuthenticated_headers.txt
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Security Testing (1)
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@Test
void testLogin() {
  HttpCookie sessionIdCookie =
      loginAndAssertResponsesWithValidationFile("/some-path");
  assertRedisSessionStateWithFile(sessionIdCookie);
}

Cache-Control: [no-cache, no-store, max-age=0, must-revalidate]
Content-Length: [0]
Cross-Origin-Opener-Policy: [same-origin]
Cross-Origin-Resource-Policy: [same-origin]
Expires: [0]
Location: [https://upstream-host:12345/auth/keycloak]
Pragma: [no-cache]
Set-Cookie: [SESSION=[MASKED]; Path=/; Secure; HttpOnly; 
SameSite=Lax]
Strict-Transport-Security: [max-age=31536000 ; includeSubDomains]

data/test/validation/testLogin_initialRedirect.txt

https://upstream-host:12345/auth/keycloak
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Security Testing (2)
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class SchoolEntryAuthorizationTest extends AbstractSpringBootTest implements AuthorizationTestTraits {

  @Autowired
  @Qualifier(AuthorizationTestUtil.REQUEST_MAPPING_HANDLER_MAPPING_BEAN_NAME)
  private RequestMappingHandlerMapping requestMapping;

  @Test
  void testEndpointAuthorization() {
    testEndpointAuthorization(testRestTemplate, requestMapping);
  }
}

data/test/validation/testEndpointAuthorization.md

METHOD URL ALLOWED_ROLES

DELETE /appointment-blocks/1 SCHOOL_ENTRY_ADMIN

GET /appointment-blocks/appointment-block-groups
PROCEDURE_ARCHIVE
SCHOOL_ENTRY_ADMIN

POST /appointment-blocks/daily-appointment-block-groups SCHOOL_ENTRY_ADMIN

POST /appointment-blocks/daily-appointment-block-groups/validate SCHOOL_ENTRY_ADMIN

[…]

Spring MVC Bean
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Creating better and more secure products is possible through a consistent 
Shift left approach and Zero Trust

Security problems that are found late in the project are very expensive

Conclusion
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Contact

https://gitlab.opencode.de/ga-lotse
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