
1

Daniel Komaromy

• Daniel Komaromy, Laszlo Szapula, Laszlo Radnai @ TASZK Security
Labs

• Various Mobile VRPs in the last 5 years

• some successes (low 7 figures in total rewards, 75+ CVEs, vendor
HoFs and other accolades)

• many failures!

• The following stories of failure come from our participation in Bug
Bounty programs of various Asian Android OEMs

2

#whoami

3

Part 1: Anger is dangerous. It makes people do stupid things.

Part 1: Fail Early, Fail Often

• Things going wrong when:

• choosing what devices to find bugs in

• deciding what/when to submit once you are finding bugs

• planning ahead with publication following disclosure

4

• Huawei: invitation to Bug Bounty

• we read the rules to see what models’ basebands are included

• Ended up submitting

• 2G RCE bugs in Helio chipsets

• 2G RCE bugs in Kirin chipsets (in 3rd party library)

• Responses

• Helio: Mediatek chipsets are excluded from the bounty

• Kirin: the models you picked are excluded from the bounty, newer models use a
different 3rd party library version

5

Wrong Targets

• Happy End

• vendor took our feedback, heavily modified the description to
address these gaps

• gave rewards for both anyway “due to high quality of submission”

• tyvm <3

• Technical Details

• see: How To Tame Your Unicorn (Black Hat 2021)

6

Wrong Targets

• Samsung: public Mobile VRP

• covered Shannon baseband RCEs for 6+ years

• Ended up submitting

• 2G RCE bugs in Shannon chipsets

• Response

• chipset PSIRT has been split out into “Samsung Semiconductor” unit

• baseband no longer covered by Mobile VRP, new unit does not offer
bounty

7

Wrong Targets

• Happy End

• vendor took our feedback, Samsung Semiconductor started a separate bug
bounty, we got an “after the fact” reward 7 months later

• Mobile VRP ended up factoring in the impact of our baseband bugs into
Android bugs we submitted simultaneously (for a baseband RCE + Android
Pivot chain) and gave higher reward there; also awarded “#1 Researcher”
accolade to TASZK Security Labs for our 2023 submissions

• again: tyvm!

• Technical Details

• see: There Will Be Bugs (CanSecWest 2024)

8

Wrong Targets

• Lesson: develop firmware scraping/testing automation

• building that infra becomes quite important vs pure bug finding over time!

• Lesson: you may need trial-and-error to figure out the *actual* model/component
coverage intent of a VRP

• aim always for newest model?

• drawback: often hardest RE target / has different attack surfaces, meanwhile
other (older) models may count too

• aim only for “most established” components?

• drawbacks of that approach are obvious

9

Wrong Targets

Wrong Time To Submit
• Theory: “report -> wait reward -> find more of the same if good reward”

• Lesson: “novelty” is regularly considered in reward amount

• “report -> wait reward -> find more of the same if good reward -> much
lower reward”

• Lesson: racing the PSIRT on attack surfaces

• “report -> wait reward -> find more of the same if good reward -> vendor
variant analysis DUP’ed it”

• Food for thought: these phenomenons can push bug hunters to hoard
findings

10

Disclosure TL Misconceptions

• Submitted baseband full chain vulns to Samsung Mobile VRP

• RCE vulns in GPRS + Android Pivot vulns in RemoteFileSystem

• Submitted at the start of April 2023

• First asked for fix status after 2 months

• asked more times over 2 more months

• Reply end of August: “will be disclosed on the 6th, Nov”

11

Disclosure TL Misconceptions

• In comparison: at same point in 2023, Samsung Semiconductor
Bulletins have released 23 baseband bugs, Low to High severity

• 21 released within 3 months of report submission, 2 within 4

• Theory: we targeted a Fall conference publication

• Reality: CVE/Bulletin released one week after the conference

• Lesson: don’t assume ~90 days is an “industry standard” disclosure
timeline

12

Don’t Look Back In Anger

• These annoyances sometimes lead to overthinking VRPs

• In some cases decided to skip/postpone target idea altogether …

• and then later saw others publish great successes on it

• Be careful about “skipping” a target out of sheer annoyance with a
VRP!

• they actually *do* reflect/change/improve, saw quite a bit of that
too

14

Part 2: Sometimes, if things are closed, you just, open them up.

Part 2: Huawei Hypervisor
• Complete talk: Don’t Believe The Hype(rvisor) @ OffByOne 2025

• Why attack a Hypervisor?

• a separate privilege level beneath the kernel in ARM processors

• intended to thwart/mitigate kernel LPEs

• Researching an exploit mitigation bypass

• Assumption: kernel r/w bug primitive or nothing (a complete kernel LPE)

• Goal: privileged shell (i.e. completed LPE)

15

Huawei HKIP As A Target

• Huawei VRP listed “exploit mitigation bypass” as a high reward
category

• HKIP is Huawei Kernel Integrity Protection, built on the ARM
Hypervisor feature

• Huawei’s own white paper on HKIP defines it as an exploit
mitigation

• our idea was: let’s find a standalone HKIP bypass and get a reward

16

HWPSIRT-2021-80829: A Sob Story

• Late 2021: we found, exploited, and reported such a vulnerability

• Logic bug: didn’t need code exec in or even corruption of
Hypervisor memory

• Submitted poc of exploit mitigation bypass of all HKIP defenses

17

HWPSIRT-2021-80829: A Sob Story

• Spring 2022: built emulation, started fuzzing

• May 2022: Huawei PSIRT response

• outside VRP scope for mitigation bypass

• HKIP is to "make attack more difficult”, it is not an "exploit
mitigation”

• Sidenote: we also submitted several kernel vulns triggerable by
untrusted_app/isolated_app around the same time (Jan 2022), and
one UAF did get a Critical rating and a reward in Mar 2022

• so that was nice, at least

18

HWPSIRT-2021-80829: A Sob Story

• Lesson: be careful when interpreting VRP category definitions

• sometimes exploit mitigations morph into “more a hardware mechanism
rather than a security feature”

• Vendors can be susceptible to “thinking inside the box”

• we were also told that a vuln that gets code exec in Hypervisor would qualify

• slightly contradicts with “higher reward amounts only for novelty”?

• We are still not aware of a fix

• the vendor saw talk preview with the “we are still not aware of a fix” line

• they didn’t communicate to us anything different about that

19

(Prior) Art
• Prior Art Then

• Lifting the (Hyper) Visor - Gal Beniamini

• A Samsung RKP Compendium - Alexandre Adamski

• Emulating Hypervisors: A Samsung RKP case study - Aristeidis Thallas

• Since

• Reversing Samsung's H-Arx Hypervisor Framework - DAYZEROSEC

• Shedding Light on Huawei's Security Hypervisor - Alexandre Adamski,
Maxime Peterlin

• Qualcomm Hypervisor Reverse Engineering - Sharad Khann

20

AArch64 Exception Levels

21

AArch64 Exception Levels

22

Accessing The Hypervisor

• Hypervisor Call (HVC)

• Trapping instructions

• MSR and MRS instructions

• e.g. TTBR1_EL1

• Secure Monitor calls

• Shared memory

23

Stage 2 Translation

24

Stage 2 Translation

25

The Huawei Way

• Using default Stage-2 protection bits

• AP bits in page entry

• Using 4 bits of unassigned bits in the PTE

• These bits show what kind of protection

26

Prmem bits

27

Protection Value AP Bits

Unprotected 0b1111 RW

ROWM 0b1010 RO

ROWM
reclaimable

0b1011 RO

RO 0b1000 RO

RO
reclaimable

0b1001 RO

XO 0b1100 RO

ROX 0b1000 RO

KO 0b1101 RO

Example: Huawei Checkroot

• Overwriting cred structure: all good and fine until opening shell

28

$ /data/local/tmp/exp.elf  
[+] Exploit task found  
[+] Creds overwritten, opening shell...  
UID root escalation!  
$

• OffByOne 25 (`Dont Believe The Hypervisor`) for kernel src details

• tl;dr: kernel traps into Hypervisor with HVC to make decisions,
because the relevant structures are RO protected

Emulation

• No access to HW elements

• no need for snapshot

• Requires minimal kernel and Secure Monitor

• Init heavily platform dependent

• Samsung: started by kernel

• Huawei: started by Secure Monitor

29

Inspiration

• Thallas: On emulating hypervisors; a Samsung RKP case study

• QEMU system mode emulator and fuzzer

• Starting point for HHEE fuzzer

30

Challenges

• Memory layout

• Initial register contents

31

Challenges

• HHEE loaded to 0x114c0000

• When launching QEMU, code is not there

• Unlike on higher addresses

• Solution: board definition

32

Challenges

• HHEE loaded to 0x114c0000

• When launching QEMU, code is not there

• Unlike on higher addresses

• Solution: board definition

33

Board definition

34

// /hw/arm/virt.c
static const MemMapEntry base_memmap[] = {
 // ...
 [VIRT_PCIE_MMIO] = { 0x10000000, 0x2eff0000 },
 [VIRT_PCIE_PIO] = { 0x3eff0000, 0x00010000 },
 [VIRT_PCIE_ECAM] = { 0x3f000000, 0x01000000 },
 /* Actual RAM size depends on initial RAM and device memory
settings */
 [VIRT_MEM] = { GiB, LEGACY_RAMLIMIT_BYTES },
};

Board definition

35

// /hw/arm/virt.c
static const MemMapEntry base_memmap[] = {
 // ...
 //[VIRT_PCIE_MMIO] = { 0x10000000, 0x2eff0000 },
 //[VIRT_PCIE_PIO] = { 0x3eff0000, 0x00010000 },
 //[VIRT_PCIE_ECAM] = { 0x3f000000, 0x01000000 },
 /* Actual RAM size depends on initial RAM and device memory
settings */
 [VIRT_MEM] = { 0x00000000, LEGACY_RAMLIMIT_BYTES },
};

Initial register contents

• Required for best emulation

• Set by trusted firmware (EL3)

• Tool: SMC read-write primitive

• Patched EL2 to save register contents

36

It’s alive!

37

Fuzzing results

• 3 days on i5 8350u

• Many false-positives

• No new vulnerabilities found

38

Old Fashioned Code Review

• Checkroot bits are managed via HVC call, but NO VALIDATION

• again, for code flow details, see `Don’t Believe The Hypervisor`

• Code exec in kernel context -> access to Hypervisor via HVC API

• Modify ROWM protected bits via API call -> bypass checkroot

39

Exploitation: Goals
• Use kernel r/w primitives

• patched into the kernel for the research purpose

• emulates kernel memory corruption exploit

• Achieve code execution via ROP

• Use Hypervisor API to bypass checkroot

• Overwrite credentials in task_struct

• Pop shell

40

Done (no)

• Making arbitrary HVC calls via ROP had some challenges

• again see the OffByOne talk for details, including some more
OEM "mitigation" we bypassed for ROP

• Now root shell pops and won't get killed

• But this is just DAC bypass

• There is still SELinux

• ... for now!

41

Prmem allocator

• SELinux policy structures allocated on selinux_pool

• After init, pool protected with HKIP_HVC_RO_MOD_REGISTER

• This can be removed with HKIP_HVC_RO_MOD_UNREGISTER

• Now SELinux policy overwriteable in memory

• But there is a catch ...

42

SELinux Bypass Plan

• RO protection removed in Stage-2 tables

• But not from kernel page tables

• Entries are protected by the Hypervisor

• But there is an easy bypass

43

SELinux Bypass Plan

• lock_range sets the target pages to RO

• But not their linear mapping equivalents

• To can get the linear address:

• get the physical address

• subtract memstart_addr from it

• add 0xffffffc000000000

44

Demo

45

46

Part 3: Sentimental value? I’ve heard of that.

Part 3: Unisoc TrustZone
• Why attack a Trusted Execution Environment?

• ARM security concept: a separate privilege level beneath the kernel
(again)

• intended to thwart/mitigate devalue kernel LPEs by moving secrets/
privileged computations into a lower level

• Researching a TEE LPE

• Assumption: code exec with kernel privileges

• Goal: arbitrary code execution in TEE

47

(Prior) Art
• Prior Art Then

• Reflections on Trusting TrustZone - Dan Rosenberg

• QSEE TrustZone Integer Signedness Bug - Frederic Basse

• Exploiting Trustzone on Android - Di Shen

• Trust Issues: Exploiting TrustZone TEEs - Gal Beniamini

• Unbox Your Phone - Daniel Komaromy

• A Deep Dive Into Samsung's TrustZone - Quarkslab

• Breaking TEE Security - Riscure

• Since

• ARM TrustZone: pivoting to the secure world - Thalium

• Hara-Kirin - Impalabs

48

TrustZone 101

49

Our Target (Unisoc TEE)
• Unisoc (formerly Spreadtrum)

• Mostly low/mid-range devices

• Not straightforward to buy in Europe

• a few accessible e.g. Samsung Galaxy Tab A8

• TrustZone not a full black box, uses common building blocks

• OS: built on Trusty

• Trustlet APIs: Global Platform

50

Firmware Acquisition

• Firmware can be downloaded from internet

• Trusted OS and TrustFirmware in BL package

• tos-sign.bin

• Signature and DHTB header

• Trustlets included in this binary

51

TOS Binary

52

Trustlets

53

Trustlet Name Image Offset (0x)

trusty-gatekeeper BB000

ipc-unittest-srv CD000

crypto-ipc D8000

storage-proxy E1000

trusty-keymaster 113000

trusty-kernelbootcp 1BD000

trusty-production 1C7000

spreadtrum-storage-
proxy

227000

trusty-oemcrypto 27E000

Trustlets

54

Trustlet Name Image Offset (0x)

trusty-gatekeeper BB000

ipc-unittest-srv CD000

crypto-ipc D8000

storage-proxy E1000

trusty-keymaster 113000

trusty-kernelbootcp 1BD000

trusty-production 1C7000

spreadtrum-storage-
proxy

227000

trusty-oemcrypto 27E000

Trusty OEMCrypto

• Performs DRM related crypto procedures

• Two modes:

• Widevine

• Unisoc OEMCrypto

55

Unisoc OEMCrypto
• Crypto API accessible from the kernel

• A lot of services

• UNISOC_OEMCrypto_InstallKeyboxOrOEMCert

• UNISOC_OEMCrypto_LoadDRMPrivateKey

• UNISOC_OEMCrypto_CopyBuffer

• UNISOC_OEMCrypto_GenerateRSASignature

• UNISOC_OEMCrypto_DecryptCENC

56

DecryptCENC

57

DecryptCENC

58

DecryptCENC

59

Time travel, nice :)

Triggering The Bug

• Through /dev/trusty-ipc-dev0

• Requires teetz_device context and system user/group

• ... or a rooted device

• Use ioctl on the driver

• Connect:

ioctl(fd, TIPC_IOC_CONNECT, "com.android.trusty.oemcrypto");

60

Triggering The Bug

• Connect to the trustlet

• OEMCrypto Init

• OEMCrypto DecryptCENC with large size

• Win

61

Exploitation

62

$ checksec trusty_oemcrypto.elf
 Arch: arm-32-little
 RELRO: No RELRO
 Stack: No canary found
 NX: NX disabled
 PIE: No PIE (0x8000)
 RWX: Has RWX segments

More time travel, very nice :)

Exploitation (POC)

• ROP chain

• Put string in BSS

• Call log function

• Visible in dmesg

• Return to message handler loop

63

Demo

64

Disclosure Outcome 1
• Severity merry-go-round

• first response: “CVSS is Medium CVSS:3.1/…”

• we point out that full-on TEE code execution LPE tends to be
higher than Medium

• second response: “High”

• very very nice

• submission: May 17th 2023, bulletin with CVE: Aug 2023

• very very very nice

65

Disclosure Outcome 2
• submission: May 17th 2023

• after bulletin, we ask about eligibility for the publicized Unisoc
Chipset Security Reward Program

66

• … not very nice :’(

“We used to have a Unisoc Chipset Security Reward Program
which was affiliated with the Google Chipset Security Reward
Program on HackerOne. However, Google terminated the project
in May, resulting in the shutdown of our program as well”

Disclosure Lessons
• Some OEMs use CVSS scoring

• applied rigidly it’s often a terrible fit for mobile LPE/RCE/SBX/etc bugs

• can’t assume that different OEMs’ assessment of “same” bug is
identical

• Sometimes “pick a random device model” *is* the more effective
strategy

• Bug Bounty programs really do change on-a-dime … must pay attention

• it was very fun to have this happen with Unisoc in May 23, after the
same happening with Samsung in April 23

67

68

Part 4: Why are you doing this? Why are you helping us?

Part 4: Mediatek Baseband
• Why attack a baseband?

• separate processors of System-on-Chips handle connectivity stacks

• exposes remote attack surfaces, often 0-click, some cases end-to-
end

• Researching a baseband RCE

• Assumption: can range from “access/mitm of an MNO” to “nothing”

• Goal: compromise baseband runtime, find highest impact bugs
(access vector-wise)

69

(Prior) Art

• VoLTE

• Marco Grassi and Kira: Over-The-Air Baseband Exploit

• Natashenka et al: How To Hack Shannon Baseband

• Emulated Baseband Fuzzing

• Prior: BaseSAFE, FirmWire

• Since: BaseBridge, Securing The Airwaves

70

Voices from the Internet

• Classic cellular networks (2G/3G): calls over control plane

• Modern networks (4G/5G): adopt VoIP for calls over user plane

• VoIP: voice call over IP-network

• SIP: session management

• SDP: stream definitions

• RTP: actual data

71

IMS

• IMS (IP Multimedia Subsystem)

• IP-based network

• separate from (regular) data traffic

• VoLTE (Voice-over-LTE)/VoNR(Voice-over-NewRadio)/VoWifi

• VoIP over IMS

72

IMS As Attack Surface
• IMS control protocols (SIP, SDP etc), underlying protocols (TCP/IP

etc), codecs of voice/video calls

• Code location in mobiles

• typically in the baseband

• sometimes (e.g. iPhone) in the application processor

• Reachability

• malicious or compromised IMS core network

• between UEs end-to-end

73

IMS Attack Surface: End-to-End?
• SIP end-to-end on paper

• But IMS nodes can filter/re-encode

• Are IMS networks perfect stop gaps against malformed SIP
packets in practice?

• (Untrustworthy) operator inter-operability loopholes?

74

IMS Attack Surface: End-to-End?
• SIP end-to-end on paper

• But IMS nodes can filter/re-encode

• Are IMS networks perfect stop gaps against malformed SIP
packets in practice?

• (Untrustworthy) operator inter-operability loopholes?

75

SIP

• HTTP-looking communication-protocol

• over TCP

• REGISTER to network (CSCF)

• SUBSCRIBE/NOTIFY

• Call (3-way): INVITE, 200 OK, ACK

76

SIP INVITE

77

SIP INVITE - SDP

78

Methodology

• Fuzz it with libafl

• harness: emulate VoLTE SIP+SDP stack using qemu

• mutation: grammar fuzzing

• detection: custom ASAN-lite hooks for better crash determinism

• goal: coverage

79

Custom-Built Harness
• Mediatek baseband is quite RE friendly (ton of debug symbols in

fw imgs)

• NanoMIPS ISA architecture needed tool customization: prior
work

• Emulation challenge: lot of state machines on the one hand,
complex hardware-related code paths on the other

• our approach: similar to BaseBridge (OffensiveCon 2025)

• leverage ramdump of the baseband runtime’s memory to get
correctly initialized state machine values

80

Grammar Fuzzing

• Similar to... any research related to fuzzing text-based protocols

• Keywords

• "Well-formed" (Context-free grammar)

• “Valid”, "almost valid", "almost well-formed"

81

Start Fuzzing

82

Effective Fuzzing vs Findings

• Fuzzing will always find already-found, shallow bugs :(

• waiting for bugs to be fixed takes long

• patch the bugs for ourselves!

• maybe kill a whole feature-set until fixed

83

Example: CVE-2023-32889

• BOF when decoding AMR/AMR-WB codec mode-set parameter

84

Example: CVE-2023-32889

• BOF when decoding AMR/AMR-WB codec mode-set parameter

85

Example: CVE-2023-32889
• Mediatek code had 16 mode-set

slots in the output structure

• hence, input length was
limited to 32 characters

• But the parsing loop itself had
no bounds checking …

• And no error handling for failed
integer conversion

• Can you see the problem? :)

86

Example: CVE-2023-32889
• Mediatek code had 16 mode-set

slots in the output structure

• hence, input length was
limited to 32 characters

• But the parsing loop itself had
no bounds checking …

• And no error handling for failed
integer conversion

•

87

• “empty” commas lead to more than 16 iterations!
,,,,,,,,,,,,,,,,1,2,3,4,5,6

Findings

88

Bug Trigger Effect CVE

multipat/mixed
content

Content-Length: 32  

300*"A"
Heap BOF CVE-2023-32886

SDP extract codec
info too many rtmap entries Stack BOF CVE-2023-32874

SDP mode set ,,,,,,,,,,,,,,,,1,2,3,4 Intra-struct OF CVE-2023-32889

SIP Asserted
Identity """""""""""""* Heap BOF CVE-2023-32888

SIP comment
recursion

Via: (((((((((((
Stack OF CVE-2023-32887

89

Disclosure Outcome

• Severity: Heap OFs set to Critical first, then lowered to Medium

• Vendor response 1*: heap overflows can’t be exploited due to a
“mitigation mechanism” that is “similar to sanitizers”

• we then provided detailed analysis of the heap implementation,
describing that we see no sign of such a thing in it

• Vendor response 2*: next slide

90

*for legal reasons, we are not claiming these quotes are actual responses
and this part is creative story telling strictly for entertainment purposes only

Disclosure Outcome

91

“(…) after the buffer is OOB written in modem, there are two
possible consequences:

1. Overwrite to code-segment: Because the code segment is
configured as read only , the overwritten in code-segment will
cause system reset immediately.

2. Overwrite to data-segment: Because the data-segment is
configured as non-executable, the overwritten in data-segment
will not be executed even they are instructions. Although the
overwritten in data-segment may not be detected and reset
immediately, the impact is temporary and will be recovered after
reboot.”

• We then found that we lacked the resources for it, so we stopped
the complex work of analyzing ~20.000 crashes

• Finally we got around to them 1y+ later

• RCA’d, found new bugs, verified liveness (~Q4 2024 so a while ago)
… then later found time to dedup and write reports … then finally:

92

Ongoing Disclosure

93

• 11 additional SIP/SDP bugs, most potentially reachable end-to-end

• 3 heap OF, 1 stack OF, 1 memleak, 6 DoS

• worth noting the impact of end-to-end reachable DoS vulns (let alone RCE)

• We didn’t use Mediatek’s Bug Bounty Program this time

• reports still included RCA and easy to replicate poc instructions

• we intend to publish in <=90 days (see https://taszk.io/disclosure)

• Time lag between liveness checks and reporting

• we truly don't know whether any / how many are 0ds as of today

Ongoing Disclosure

https://taszk.io/disclosure

Disclosure Lessons

94

• A VRP (to a vendor) is not always “coordinated disclosure with a reward”

• Is it necessary to re-learn lessons from the past? We certainly can’t
express them any more eloquently than these trailblazers

Thank you!
Questions?

95

