Securing the Airwaves
Emulation, Fuzzing, and Reverse Engineering of iPhone Baseband Firmware

Bruno, Luca, Rachna {bruno,glockow,rachna}@srlabs.de

Security
I Research

Labs

Nice to meet you :)

Bruno
Produit

= Luca
b Glockow

Rachna
Shriwas

® Background in low-
level security and
cryptography

" Experience in
fuzzing, telco and
hardware hacking

" GitHub
@brunoproduit

® Background in
application and
device security

® Experience in
hacking hard- and
software in telco

" GitHub @luglo

[> Security Research Labs

" Background in
device testing,
fuzzing and code
assurance

" GitHub @rachsrl

We start where other research projects stopped

[> Security Research Labs

Unlike other baseband implementations,
Qualcomm leverages a fully-custom
architecture known as Hexagon |[...]
Unfortunately, tooling for this architecture is
sparse, and especially full-system emulators
are lacking. 99

Hernandez et al. 2022, “FirmWire: Transparent Dynamic Analysis for Cellular
Baseband Firmware”

We investigate the other chip everyone has in their pocket

Our goals

Create Transparency
0 Understand, document, and share
Hexagon security insights

Enable vulnerability research

Help secure Qualcomm-based phones
against exploitation

Release Tooling

Open source fuzzing setup and tooling
for Hexagon basebands

[> Security Research Labs

The Qualcomm baseband exposes multiple interfaces, making it vulnerable to diverse attacks

(L)

Attack
classes

Over-the-air
Interface

Attack
surface

Application Impersonation
processor (fraud)

Inter-
communication

Tracking
@5

Baseband

_ .

Diagnostic

[> Security Research Labs

Existing baseband research does not cover Hexagon baseband full system emulation

& Emulation 45 Fuzzing O Hexagon

Reverse = Reversing Hexagon: Burke 2018 [1] v
Engineer = Reversing DIAG: Esage 2020 [2]
Hardware = Fuzzing on Hexagon hardware: v v
Fuzz Gong & Zhang 2021 [3]
= Advanced rehosted baseband fuzzing: < 7
Maier et al 2020 [4], Hernandez et al 2022 [5]
Emulation .
The gap we want to fill v v Z

[1] Burke 2018, A Journey into Hexagon
[2] Esage 2020, Advanced Hexagon DIAG
[3] Gong & Zhang 2021, In-Depth Analyzing and Fuzzing for Qualcomm Hexagon Processor
[4] Maier et al. 2020, BaseSAFE: baseband sanitized fuzzing through emulation
D Secu rity Research Labs [5] Hernandez et al. 2022, FirmWire: Transparent Dynamic Analysis for Cellular Baseband Firmware

https://media.defcon.org/DEF%20CON%2026/DEF%20CON%2026%20presentations/DEFCON-26-Seamus-Burke-Journey-Into-Hexagon.pdf
https://zerodayengineering.com/research/slides/CCC2020_AdvancedHexagonDiag.pdf
https://i.blackhat.com/asia-21/Thursday-Handouts/AS21-In-Depth-Analyzing-Fuzzing-Qualcomm-Hexagon-Processor.pdf
https://dl.acm.org/doi/10.1145/3395351.3399360
https://www.ndss-symposium.org/wp-content/uploads/2022-136-paper.pdf

Agenda

} Introduction: Hexagon baseband

From research to tooling
Demo: Fuzzing Hexagon

Opening up baseband security

[> Security Research Labs

Hexagon is a whole new DSP-focussed CPU architecture, prompting research from the ground

again

Challenges for researchers Design = O Optimized for parallel execution (VLIW)
. Highlights = L2l DSP-specialized (vs general CPU)
Custom CPU " Lacks support in = &\ Quirky registers (chicken, duck, goose...)

architecture most tooling
= Tedious to reverse

global_register_t

G_REG_ACC1,
G_REG_CHICKEN,
G_REG_STFINST,

= @ Privilege mode separation: monitor, guest, user

= Instruction packets, group of parallel instructions

OIS GI NN I = Proprietary tooling

software stack §® Adaptation of
common attack A2 addi
techniques required {
J2 call
. A2 tfrsi
Custom = No free tooling or) -
communication documentation exists 77
_cmpeq

protocols

[> Security Research Labs

Agenda

Introduction: Hexagon baseband

} From research to tooling

Demo: Fuzzing Hexagon

Opening up baseband security

[> Security Research Labs

We need the firmware and a customized emulator to run Hexagon on a different machine

[> Security Research Labs

QEMU:
Emulate baseband on
unrestricted hardware

Ghidra:
Integrate Hexagon
processors in Ghidra

Clade:
Reverse-engineer

compression algorithm

LibAFL:
Coverage guided
fuzzing with QEMU

Firmware Harness:
Hook subsystem for
analysis & fuzzing

Obtain firmware

Get full system
Emulation

Patch for our
device

10

The firmware is the initial step in our

emulation effort
Step Details

‘ Obtain firmware

Screenshots

= Download publicly accessible iOS IPSW
firmware files (e.g. from ipsw.me)

= Extract baseband bundle from the IPSW
archive and identify QUALCOMM DSP6

executable (qdsp6sw.mbn)

Obtain
firmware

= |dentical strings confirm, firmware shares

Analyze
firmware code

= Build on the same Qualcomm Hexagon
SDK

[> Security Research Labs

¥ IPSW Downloads

Choose an IPSW for the iPhone 14 Pro

IPSWs OTAs Device Information

Signed IPSW files can be restored via iTunes. Unsigned IPSWs cannot currently be restored via iTunes.

Signed IPSWs

12th May 2025

Router firmware iPhone firmware

11

Finding (Q)emu: Qualcomm works on Get full system
_ Emulation

Hexagon full system emulation

Step Details Screenshots

Find full = hexagon-softmmu not supported by
system QEMU
emulator

= QEMU fork maintained by Qualcomm
Innovation Center

= hexagon-softmmu implementation on
WIP branch

Run emulator = il - -h
u u Compile and run gemu-system-hexagon Boot logs in QEMU

$ gemu-system-hexagon -monitor

stdio —display none —-kernel qurt printf(s_QURT_kernel_started_fella57e);

gdspbsw.mbn

prob set_boot status(0x19),

FUM fell2al0(ivar8,param_ 2,¢Var7 ppuVaril3s, parc
uVaré = FUN_fel118a20();
uVard = 0;

Progress boot = More logs appear in reversed firmware NVE TR = 1
some_struct_contruction_subtree
c()(jgg (uvaré,param_2,-08x1ef7d0@,ppuVari3,gd

(char)in_R31,param_7);
uvarll = (undefined)param_2;
prob_se

Boot logs in decompiled code

[> Security Research Labs

12

Without QEMU modification, firmware boot fails with only two lines of output

[> Security Research Labs

We control the machine but not its software -

reversed bug hunting
Step Details

Screenshots

Patch for our
device

Dynamic = Reading the source and QEMUs logging
Debugging infrastructure is extremely helpful

Example = Boot is stuck without error

$ gemu-system-hexagon -display
none —-kernel gdsp6sw.mbn —d mmu

problem

= TLB issue and its location indicated by
QEMU logs

TLB index out of bounds

Unexpected behaviour triggered

Identify max used TLB size

Modify
target/hexagon/hex mmu.h

[> Security Research Labs

TLB logs during emulation

TLB size in QEMU machine definition

14

Hacking around the TLB size yields one more line

of boot log

REXEARCHER U3ED
PUBLIC CODE?®

[> Security Research Labs

After the emulator runs, we deeply inspect the firmware with Ghidra

[> Security Research Labs

Ghidra:
Integrate Hexagon
processors in Ghidra

Clade:
Reverse-engineer

compression algorithm

LibAFL:
Coverage guided
fuzzing with QEMU

Firmware Harness:
Hook subsystem for
analysis & fuzzing

Configure memory
map

Compare
disassembly

Train Ghidra
manually

16

Reversing the firmware with Ghidra involves C°"figure
modifying the memory map

Step

memory map

Details Screenshots

Problems with
reversing
using Ghidra

Fix: Configure

memory map
manually

= Use Ghidra with Hexagon plugin
= Misidentified memory segments

= Requires manual correction

(gemu) info mtree

U Memory Segments defined by address-space: cpu-memory-0
. address-space: cpu-memory-1
QEMU maChIne address-space: cpu-memory-2

address-space: cpu-memory-3
address-space: cpu-memory-4

. EXtraCt memory segment address-space: cpu-memory-5
. . address-space: memory
details from the firmware £OOODOOAOPARAORO-FFFfFfffFfffffff (prio B, i/o): system
000P00EPOOENOOED-0EPEEEEEFFFFffff (prio O, ram): lpddr4.ram
(mtree) 00POEAERd8180000-00ORAEORd81801ff (prio O, rom): config_table.rom

00000000d81e0000-00000008d81effff (prio B, i/o): fast

. 00000000d8400000-00000000d87FFFFf (prio ©, ram): vtcm.ram
. ’
AdJUSt memory map to set 00000000Fab20000-BBBEAEEE Fab28FF (prio B, i/0): qutimer
00000000 c910000-00000000Fc910FFF (prio 0, i/0): 12vic
correct start and end addresses 000008080Fc921000-0000000EFca22FFf (prio B, i/o): qutimer_views

0000000910000000-0000OBESTFFFFfff (prio B, ram): cpz.ram

TSEYITem_zZ0o CTUToUUYY CUOTOITTIT
Eeegreniele—— O — g —
config_table.rom d8180000 d81801ff
fast d81e0000 d8le@fff
vctm.ram d8400000 d87fffff
qutimer fab20000 fab20fff
12vic fc910000 fcolofff
qutimer_views fc921000 fc922fff
L L R L a0
segment_31 fe200000 ff7elfff
_elfHeader _elfHeader::0... _elfHeader::0...
el R0 G AR A S SR 0 G AN B B2 .0 G AN B
cpz.ram cpz.ram::9100... cpz.ram::91ff...
unallocated_0 unallocated_@... unallocated_0...
Ipddr4.ram lpddr4.ram::0... 1lpddr4.ram::f...

for the segments
Memory segments information using mtree

[> Security Research Labs

Memory mapping in Ghidra

17

Comparing the disassembled code with Hexagon @
disassembly

tools output refines the reversing efforts

Step Details Screenshots
= Gap: Ghidra misses registers, memor LAB_c0312040 XREF[1]:
Problem P & ' y 0312040 04 60 00 7c { A2_combineii RSR4 0x0 Ox1
addresses and VLIW boundaries 0312044 01 40 00 78 A2_tfrsi R1 Ox0

. p dabilitv: Opcod | 0312048 81 41 01 3c S4_storeirb_io R1 0x3 0x1
oor readabllity: UpCodes are 1ess c031204c 02 c8 01 3c S4_storeirb_io R1 DAT 00000010 0x2

readable compared to objdump output 0312050 06 40 c2 91 { L2 loadrd_io R7R6 R2 0x0

Disassembled in Ghidra with hexagon-plugin

= Validate: Use Hexagon SDK’s tool c0312040: 04 60 00 7c 7c006004 { r5:4 = combine(#0,#1)
hexagon-11vm-objdump to validate c0312044 . 01 40 00 78 78004001 rl = #0
))) c0312048: 81 41 01 3c 3c014181 memb(rl+#3) = #1
disassembled code in Ghidra 031204c: 02 c8 01 3¢ 3c01c802 menb(r1+#16) = #2 }
= Update the register names in Ghidra, if c0312050: 06 40 c2 91 91c24006 { r7:6 = memd(r2+#0)
needed Disassembled with hexagon-llvm-objdump (official Hexagon-SDK tool)

[> Security Research Labs 18

Renaming structs and functions in Ghidra @ :::‘nuglfl\;dra

takes time but enhances code comprehension

Step Details Screenshots
. > 1 prob_set_boot_status
Refine = Manually rename functions based on > § prob_set clade2_cfg_base
function our knowledge and the print statements > § prob_task_indexing
. . > § process_kill
naming in the code . B q
> ¥ gmi_time_client_connect

Renamed functions in Ghidra

Define data- = Configure data types and structs based Bii Data Type Manager
structs on open-source code and header v |& qurt_thread.h
definitions > D defines
ZE qurt_cache_partition_t
g qurt_thread_attr_t
i1 _qurt thread t
Configured structs in Ghidra
Analyze = Analyze runtime register values using (gemu) info registers
register states QEMU to compare with the code logic

: General Purpose Registers = {

Ox00000000
2x00000000
Ox001coa71
Ox0000008ac

Runtime memory analysis

[> Security Research Labs 19

, . . . =
Bonus: Mapping boot flow with the decompiled @

code calls for automation

Step Details Screenshots
i . fel02b3c 00 c@ 41 a®@ { Y2_dccleaninva R1
Capture the = Capture full trace with QEMU monitor fe102b40 00 c@ 81 91 { L2_loadri_io param_1 R1=>DAT_fe100044 0x0
] fe102b44 00 c@ 9f 52 { J2_jumpr R31
boot trace and save to a file
* FUNCTION *

./qgemu-system-hexagon -kernel qdsp6sw.mbn

uint _ stdcall FUN_fel@2b48(uint param_1)
assume endloop = 0x0@
assume immext = Oxffffffff
assume pkt_next = @xfel@2b4c
assume pkt_start = 0xfel@2b48

-monitor stdio -d exec 2Z2>trace.txt

P o) Pvth ot uint RO:4 <RETURN>
= parse e trace using a on Scri uint RO:4 param_1
Create a g y P FUN_fe102b48 XREF [2]: FUN|
. . N FUN|
Ghidra script = Highlight: Color each memory address fe102b48 02 c0 86 6e { Y2_tfrscrr R2 S6_SSR
. fel02bdc 00 40 7f 00 { A4_ext 0x700000
reached durlng the bOOt prOCGSS fel@2b50 00 cc 02 de S4_andi_asl_ri R2 0x7f00000 @xc
fel@2b54 a2 cc 40 8e { S2_lsr_i r_or R2 param_1 0xc
fel02b58 01 c@ 82 6c { Y2_tlbp R1 R2
fel02b5c 0@ 5f @1 85 { S2_tstbit i PO R1 Ox1f
e e . H 3 feld2b6@ 00 c8 5f 53 J2_jumprtnew PO R31
Optimize the = Scale: Update script to support multiple fe102b64 00 c8 01 8d { S2_extractu param_1 R1 0x8 0x0
: fel02b68 00 c@ 9f 52 { J2_jumpr R31
script threads fel02b6c e@ ff df 78 { A2 tfrsi RO -0x1
fe1l02b70 00 c@ 9f 52 { J2_jumpr R31

Diff t colors for different thread
ifferent colors for different threads Galleras Geodes it @i

[> Security Research Labs 20

Compare Train Ghidra

We can now follow along emulator Configure
execution in our Ghidra setup

memory map disassembly manually

feldco80 4a 75 fe 5b { J2_call prob_set_boot_status

feldco84 00 c3 00 78 A2_tfrsi uVar4 0x18

feldcw88 14 59 @0 5a { J2_call qurt_printf

fel@co8c 95 46 el Of A4_ext S_OxX%X,_BADVA:_Ox%X,_SSR:_@x%x,_SP_fella53b+5
fel@co9e c@ c7 00 78 A2_tfrsi uVar4=>s_QURT_kernel_started_fella57e s_QURT_k..
fel0c094 4@ 75 fe 5b { J2_call prob_set_boot_status

feldc098 20 c3 00 78 A2_tfrsi uVar4 ©x19

fel@dc@9c 0a 59 00 5a { J2_call qurt_printf

feldc0a® 96 46 el of Ad_ext s_RT_kernel_started_fella57e+2

feldcOad 60 c2 00 78 A2_tfrsi iVar8=>s_QURT_kernel_init_cache_params_fella59..
feldcPa8 b4 f4 00 5a { J2_call FUN_fell2a1@

fel@cPac ba e4 01 5a { J2_call FUN_fel18a20

feldcobd 0c 42 el 0f { A4_ext DAT_fel08300

feldcOb4 02 co 00 78 A2_tfrsi uVarl2=>DAT_fel08300 DAT_fel08300

feldcOb8 5c 6b 00 5a { J2_call some_struct_contruction_subtree

fel@cObc @1 c@ 42 3c S4_storeiri_io uVarl2=>DAT_fel08300 0x0 0Ox1

feldcOco 2a 75 fe 5b { J2_call prob_set_boot_status

feldcOc4 40 c3 00 78 A2_tfrsi ivar8 oxla

feldcoc8 f4 58 00 5a { J2_call qurt_printf

fel@cOcc 96 46 el @f A4_ext s_RT_kernel_started_fella57e+2
felocod4 a6 ee ff 5b { J2_call clade_related
felec@d8 4c f1 ff 5b { J2 call clade related2

Colored opcodes in Ghidra reached during the boot flow

prob_set_boot_status(0x18);

qurt_printf(s_QURT_kernel_started_fella57e);
E E 5 E H E [: H E E u 5 E [' plrfob_sei_boot_status(0x19);
ivar8 = qurt_printf(s_QURT_kernel_init_cache_params_fella593);
E u H T I H E ;Ulilifellzgle(iV;rB,param_Z,iVar7,p;l)u\l/ar13,param_5,param_6):
Var6 = FUN_fell8a20();
IMSPECTION?® ¥ | e

DAT_fel08300 = 1;

some_struct_contruction_subtree
(uvar6,param_2,-0x1ef7d0@, ppuvarl3, param_5,param_6,unaff_R16,unaff_R17,unaff_R30,
(char)in_R31,param_7};

uVarll = (undefined)param_2;

prob_set_boot_status(0xla);

iVar7 = qurt_printf(s_QURT_root_task_started_fella5b2);

uvar5 = clade_related((char)ivar7,uvarll,uVar4, (char)ppuVvari3, (char)param_5, (char)param_6,

CONCAT44(unaff_R17,unaff_R16),CONCAT44(in_R31,unaff_R30));
clade_related2(uVar5,uVarll,uVar4, (char)ppuVari3, (char)param_5, (char)param_6,unaff_R16,unaff_R17
,unaff_R30, (char)in_R31,param_7,param_8);

Matching decompiled code
[> Security Research Labs 21

We can observe different compression mechanisms in the firmware, our next stage to tackle

[> Security Research Labs

Clade:
Reverse-engineer
compression algorithm

Compressed
segments

LibAFL:
Coverage guided
fuzzing with QEMU

Firmware Harness:
Hook subsystem for
analysis & fuzzing

Decompression

Skip
decompression

22

Various proprietary compression algorithms

slow the pace of reverse engineering efforts

32-byte, 8-word Cache Line A" of “n" cache lines in a CLADE Compressed

De Ita com press 5 U Sed tO com p ress d ata | n Data Stream requested from TCM by Processing Component 32-byte, 8-word Cache Line "n”
: A

Qualcomm firmware; tools available for e
decompreSSion e | sl s epiipsemstesey N onmenieon g L [s ::f
CLADE
- I g oo BT 220 Compressed
Q6zip: Used to compress code in Qualcomm ! A | N Data Steam
firmware; tools available for decompression D
CLADE
Decompressed
S Data Stream
delivered to
Processing
Component
CLADE: Replaces Q6zip; requires CLADE dict)
and config for decompression Dictionary 1 Dictionary 2 Dictionary 3
FIG. 3

= From Compressed Stream = From Dictionary

CLADE compression algorithm

CLADE2: Enhanced version of clade; utilizes
hardware for decompression

[> Security Research Labs

https://patentimages.storage.googleapis.com/5a/0e/7b/68e1c19996e217/US9300320.pdf

23

The manual decompression of clade section
achieves partial progress, but full resolution
requires additional analysis

Step Details

Screenshots

Decompression

= Binwalk and binutils identify compressed
sections

Decompress
firmware

sections = Public tooling decompresses sections

successfully

= Add decompressed sections with Ghidra
Memory Manager

Import
sections with
Ghidra

[> Security Research Labs

Entropy

0.0 0.2

Entropy

Offset

0.8

1.0
le8

Binwalk output of iPhone baseband

sauZIIIIIT

id7fFFFFF
: : 18000000
::d8000001
::d8000002
::d8000003
::d8000004
::d8000005
: : 18000006
::d8000007
::d8000008
::d8000009
::d800000a
::d800000b

hbbbbhbbbbbbbb

Before decompression

7
7
7
7
7
7
"7
"7
7
7
"7
7
7

[3
77
7
7
(&4
(o d
7
(&4
(&4
(&4
7
o4
7

=)

Wiae T AT

d8000004 00 co 00 78
d8000008 14 c@ 0c 10
d800000c 8a 4c 30 5b
d8000010 21 40 15 b8
d8000014 00 40 71 70
d8000018 42 eb 12 78
d800001c 00 62 30 73
d8000020 dc 52 00 Oe
d8000024 a2 43 00 78
d8000028 c3 eb 12 78

e A

FUN_d8000000
d8000000 b8 58 01 5a { J2_call

{
{

A2_tfrsi

J4_cmpeq...

J2_call
A2_addi
A2_tfr
A2_tfrsi

Ad_combi...

Ad_ext
A2_tfrsi
A2_tfrsi

d800002c 60 e5 ff 5b { J2_call

After decompression

S e

FUN_d300b170
RO 0x0

R20 0x@ LAB_d8000030
SUB_d7981920
R1 R21 -@x7fff
R@ R17

R2 @x255a

R1R@ R16 0x10
0xed04b700

R2 0xed04b71d
R3 @x255e
SUB_d7ffcaec

24

Using hexagon-lldb, enables dynamic analysis on

the firmware

Step Details

Skip
decompression

Screenshots

Manual flow Start emulation
correction \l,

Emulate until eternal loop/crash

v

Reverse engineer failed codeflow

v

Set breakpoint in LLDB and hotfix codeflow

v

Continue booting

Done: User mode reached

[> Security Research Labs

init static mapping: ppn 0x00005780, vpn 0Ox00005780, pages 0x00000040
init static mapping: ppn 0x00004900, vpn 0Ox00004900, pages Ox00000010

finished static mem
App Images Init

Finished initializing memory areas

sysstatus

modectl: ©x003d003f

bestwait: @x1ff / 511 (dec)
schedcfg: 0x0000010f - int #0f / 15 (dec), EN:
syscfg: 0x0095807f

Priv Cause

Monitor EX,GM, IE SS, UM, XE
Monitor EX,GM, IE,UM SS, XE

Monitor EX,GM, IE SS, UM, XE
Monitor EX,GM, IE SS, UM, XE
Monitor EX,GM, IE SS, UM, XE

Custom LLDB status commands for Hexagon

25

i A\ Compressed . Skip

flow errors and skip parts where needed

PRESEARCHER U3ED
CONMTEOL FLOH
MAMIPULATIOMN?®

[> Security Research Labs

After controlling the flow manually, we want full control and fuzzing with LibAFL

LibAFL:
Coverage guided Merge codebase Instrumentation
fuzzing with QEMU

Firmware Harness:
Hook subsystem for
analysis & fuzzing

[> Security Research Labs

27

LibAFL’s QEMU provides exactly what we need
but merging it with Hexagon QEMU is hard

Step Details

‘ H‘)% Merge codebase

Screenshots

libafl-gemu- = Hooks for control flow manipulation
bridge = Snapshots of the process

= User mode emulation implemented for
hexagon

l No common ancestor with Hexagon
QEMU

Merge = Diff bridge against QEMU base version

branches = Apply diff on Hexagon QEMU

MELUEN . .
y = Fix compile errors

Feature = Patch in support for Hexagon system
integration mode support

[> Security Research Labs

LibAFL QEMU Process

Fuzzer

QEMU (library)

LibAFL Components

1

Instrumentation

User mode : System mode

Syscall Hooks

Fast Snapshot H

Thread Hooks

F___l___T

Crash Handling

Soft
MMU

Devices

Harness

I

Code Hooks

(cmps, load/store, ..)

TCG Guest Code

LibAFL QEMU architecture diagram

28

LibAFL provides hooks, which we use to

instrument the baseband boot procedure
Details

Step

=); Instrumentation

Screenshots

Define
breakpoints

Compare with
disassembled
code

Control flow
manipulation

Rust function hook in the fuzzer to handle
breakpoints

Introspection in common functions like
printf

JSON configuration for breakpoints

Colored trace analysis guides flow
manipulation

Boot optimizations by skipping memory
zeroing and device initialization functions

Boot progression

[> Security Research Labs

"hreakpoints": [
{
"name": "qurt_println",
"address": "BxfelBf2b0",
"handler": "HandlePrintln"

}J

JSON config

Boot logs after control flow manipulation

29

Creating a harness requires taming a
108MB proprietary codebase

P

Step Details Screenshots
Codebase = 70k strings, 30k functions most without Thread Name Thread ID Proirity PID MCPS Deita CPU % Total CPU % Stack Size (bytes)
A A refe rences mll_mgr 148 98 0 09 0.16 0.24 9216
havigation RFLM_QLNK_OFD1 106 51 0 079 0.18 0.21 4088
: LFW_SCHD_CMN_1 3052 27 0 051 0.09 0.13 8112
= Cross reference with source code from VSTRR radd 20d2 ol 028 012 01a o109
SDK and internet RFLM_CCS f7 33 0 04 0.1 0.1 4016
I _fe 176 99 0 0.36 0.11 0.09 32768
= Utilize Ghidra scripting to recover gsm_msgr_ti 142 99 0 0.29 0.07 0.08 4608
_ slpc_worker 17d 131 0 032 0.07 0.08 8192
function names Prof TP 25d04a 124 0 0.25 0.07 0.07 4096
GFW_GENERIC_1 106e 40 0 023 0.15 0.06 8192
L] COmpare with Qualcomm tooling e.g. GFWRF_TRIG2_AD 1070 27 0 023 0.1 0.06 4096
. GFWRF_TRIG1_AD 1071 27 0 023 0.06 0.06 4096
QXDM monitoring DPC_Task 1000 126 0 047 0.05 0.06 4096
RFLM_QLNK 107 33 0 018 0.05 0.05 4088
gsm_rr 120 164 0 0.8 0.04 0.05 384

[> Security Research Labs

Running processes in QXDM

30

With integration of LibAFL we successfully boot Bﬁm

the Hexagon baseband and are ready to fuzz

mer 25 jun 12:13 1§

sh ~/Dfc/hexagon_fuzz
/Documents/code/hexagon_fuzz

FREEARCHER U3ED
DARPK GIT MAGIC?Y

[> Security Research Labs

llr
w 9
Qe
52
©

2%
Y o
au
ws
a4
€ o
I"O
w T

analysis & fuzzing

With this setup we are ready to explore the unknown

32

[> Security Research Labs

Agenda

[> Security Research Labs

Introduction: Hexagon baseband

From research to tooling

} Demo: Fuzzing Hexagon

Opening up baseband security

33

Fuzzing the Hexagon baseband: we share our tooling

Architecture Components Architecture Diagram

Our Hexagon baseband fuzzer consists of following f Il
components: config.json
a Config. Set fuzzing parameters and breakpoint conﬁgw ;uzz target,
addresses Breakpoints monitor
o Harness. Rust harness to interact with LibAFL to set |||
breakpoints, fuzz target, monitor process and process
coverage
m coveraye hooks into
LibAFL. Hook into firmware and introspect feedback
@ QEMU. Emulate the Hexagon firmware and get
coverage feedback %Coloﬁze.py '
boot trace :

0 Ghidra scripts. Improve understanding of decompiled
code and progress boot

emulates colors

(FRrMWQre.MBn] (Ghidra]

[> Security Research Labs

34

Demo

kB (000 @ en = 4) @ 84%

K

(elelala el |

&

FRESEARCHER U3ED

PUBLIC KMNOWLEDGE !
w

—

[> Security Research Labs 35

Agenda

[> Security Research Labs

Introduction: Hexagon baseband
From research to tooling

Demo: Fuzzing Hexagon

} Opening up baseband security

36

We refine and integrate our tool to enable successful vulnerability research

Goal Approach
Targeted 1. Map critical functions @ Thank you QP
fuzzing 2. Map exposure: Identify functions that can be triggered from = Androm3da
phone/SIM L CUREE

3. Optimize fuzzing harness to dynamically adapt to the target function
= domenukk

= Janne
Optimize 1. Decompress CLADE2 segments to enable proper task initialization . nlitsme
CLADE2 2. Ghidra integration: Integrate decompressed output with Ghidra to .
decompression refine decompiled code nsr

= Mzakocs

On-device Dynamic testing on iPhone:

verification Trigger crashes, eg. using an SDR
“““ GitHub

Integrate with Integrate Hexagon fuzzer with FirmWire I u

existing tools srlabs/hexagon_fuzz

= toshipiazza

[> Security Research Labs 37

	Default Section
	Slide 1: Securing the Airwaves Emulation, Fuzzing, and Reverse Engineering of iPhone Baseband Firmware
	Slide 2: Nice to meet you :)
	Slide 3: We start where other research projects stopped
	Slide 4: We investigate the other chip everyone has in their pocket
	Slide 5: The Qualcomm baseband exposes multiple interfaces, making it vulnerable to diverse attacks
	Slide 6: Existing baseband research does not cover Hexagon baseband full system emulation
	Slide 7
	Slide 8: Hexagon is a whole new DSP-focussed CPU architecture, prompting research from the ground again
	Slide 9
	Slide 10: We need the firmware and a customized emulator to run Hexagon on a different machine
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15: Hacking around the TLB size yields one more line of boot log
	Slide 16: After the emulator runs, we deeply inspect the firmware with Ghidra
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21: We can now follow along emulator execution in our Ghidra setup
	Slide 22: We can observe different compression mechanisms in the firmware, our next stage to tackle
	Slide 23
	Slide 24
	Slide 25
	Slide 26: Connecting LLDB to QEMU, we can solve code flow errors and skip parts where needed
	Slide 27: After controlling the flow manually, we want full control and fuzzing with LibAFL
	Slide 28
	Slide 29:
	Slide 30
	Slide 31: With integration of LibAFL we successfully boot the Hexagon baseband and are ready to fuzz
	Slide 32: With this setup we are ready to explore the unknown
	Slide 33
	Slide 34: Fuzzing the Hexagon baseband: we share our tooling
	Slide 35: Demo
	Slide 36
	Slide 37: We refine and integrate our tool to enable successful vulnerability research

