
SRLabs Template v12

Securing the Airwaves
Emulation, Fuzzing, and Reverse Engineering of iPhone Baseband Firmware

Bruno, Luca, Rachna {bruno,glockow,rachna}@srlabs.de

Nice to meet you :)

2

▪ Background in low-
level security and
cryptography

▪ Experience in
fuzzing, telco and
hardware hacking

▪ GitHub
@brunoproduit

Bruno
Produit

Rachna
Shriwas

▪ Background in
device testing,
fuzzing and code
assurance

▪ GitHub @rachsrl

▪ Background in
application and
device security

▪ Experience in
hacking hard- and
software in telco

▪ GitHub @luglo

Luca
Glockow

We start where other research projects stopped

3

Unlike other baseband implementations,
Qualcomm leverages a fully-custom
architecture known as Hexagon […]
Unfortunately, tooling for this architecture is
sparse, and especially full-system emulators
are lacking.

Hernandez et al. 2022, “FirmWire: Transparent Dynamic Analysis for Cellular
Baseband Firmware”

We investigate the other chip everyone has in their pocket

4

Create Transparency

Understand, document, and share
Hexagon security insights

Enable vulnerability research

Help secure Qualcomm-based phones
against exploitation

Release Tooling

Open source fuzzing setup and tooling
for Hexagon basebands

Our goals

The Qualcomm baseband exposes multiple interfaces, making it vulnerable to diverse attacks

5

Attack
surface

Over-the-air
Interface

Inter-
communication

Diagnostic
Baseband
processor

Application
processor

Attack
classes

Intercept

Impersonation
(fraud)

Tracking

DoS

2

3

2

3

1

Existing baseband research does not cover Hexagon baseband full system emulation

6

▪ Fuzzing on Hexagon hardware:
Gong & Zhang 2021 [3]

 Emulation ⬡ Hexagon Fuzzing

Reverse
Engineer

▪ Reversing Hexagon: Burke 2018 [1]

▪ Reversing DIAG: Esage 2020 [2]

Hardware
Fuzz

Emulation
Hexagon Fuzz The gap we want to fill

[1] Burke 2018, A Journey into Hexagon
[2] Esage 2020, Advanced Hexagon DIAG
[3] Gong & Zhang 2021, In-Depth Analyzing and Fuzzing for Qualcomm Hexagon Processor
[4] Maier et al. 2020, BaseSAFE: baseband sanitized fuzzing through emulation
[5] Hernandez et al. 2022, FirmWire: Transparent Dynamic Analysis for Cellular Baseband Firmware

▪ Advanced rehosted baseband fuzzing:
Maier et al 2020 [4], Hernandez et al 2022 [5]

Emulation
Fuzz

https://media.defcon.org/DEF%20CON%2026/DEF%20CON%2026%20presentations/DEFCON-26-Seamus-Burke-Journey-Into-Hexagon.pdf
https://zerodayengineering.com/research/slides/CCC2020_AdvancedHexagonDiag.pdf
https://i.blackhat.com/asia-21/Thursday-Handouts/AS21-In-Depth-Analyzing-Fuzzing-Qualcomm-Hexagon-Processor.pdf
https://dl.acm.org/doi/10.1145/3395351.3399360
https://www.ndss-symposium.org/wp-content/uploads/2022-136-paper.pdf

7

Introduction: Hexagon baseband

From research to tooling

Demo: Fuzzing Hexagon

Opening up baseband security

Agenda

Hexagon is a whole new DSP-focussed CPU architecture, prompting research from the ground
again

8

▪ ⬡ Optimized for parallel execution (VLIW)

▪ DSP-specialized (vs general CPU)

▪ Quirky registers (chicken, duck, goose…)

▪ Privilege mode separation: monitor, guest, user

▪ Instruction packets, group of parallel instructions

Design
Highlights

A2_addi

{

J2_call

A2_tfrsi

}

J2_cmpeq

Custom OS and
software stack

Custom
communication
protocols

Custom CPU
architecture

▪ Lacks support in
most tooling

▪ Tedious to reverse

▪ Proprietary tooling

▪ Adaptation of
common attack
techniques required

▪ No free tooling or
documentation exists

Challenges for researchers

9

Introduction: Hexagon baseband

From research to tooling

Demo: Fuzzing Hexagon

Opening up baseband security

Agenda

10

We need the firmware and a customized emulator to run Hexagon on a different machine

QEMU:
Emulate baseband on
unrestricted hardware

Ghidra:
Integrate Hexagon
processors in Ghidra

Clade:
Reverse-engineer
compression algorithm

LibAFL:
Coverage guided
fuzzing with QEMU

Firmware Harness:
Hook subsystem for
analysis & fuzzing

Get full system
Emulation

Patch for our
deviceObtain firmware

11

Obtain
firmware

Analyze
firmware

Step Details

▪ Download publicly accessible iOS IPSW
firmware files (e.g. from ipsw.me)

▪ Extract baseband bundle from the IPSW
archive and identify QUALCOMM DSP6
executable (qdsp6sw.mbn)

Screenshots

▪ Identical strings confirm, firmware shares
code

▪ Build on the same Qualcomm Hexagon
SDK

The firmware is the initial step in our
emulation effort

Router firmware

Get full system
Emulation

Patch for our
device

Obtain firmware

iPhone firmware

Find full
system
emulator

Progress boot

▪ hexagon-softmmu not supported by
QEMU

▪ QEMU fork maintained by Qualcomm
Innovation Center

▪ hexagon-softmmu implementation on
WIP branch

▪ More logs appear in reversed firmware
code

Get full system
Emulation

Patch for our
device

Obtain firmwareFinding (Q)emu: Qualcomm works on
Hexagon full system emulation

12

Step Details Screenshots

Run emulator ▪ Compile and run qemu-system-hexagon

$ qemu-system-hexagon -monitor

stdio -display none –kernel

qdsp6sw.mbn

Boot logs in decompiled code

Boot logs in QEMU

13

Without QEMU modification, firmware boot fails with only two lines of output

14

Dynamic
Debugging

Fix

▪ Reading the source and QEMUs logging
infrastructure is extremely helpful

▪ Identify max used TLB size

▪ Modify
target/hexagon/hex_mmu.h

▪ Boot is stuck without error

▪ TLB issue and its location indicated by
QEMU logs

▪ TLB index out of bounds

▪ Unexpected behaviour triggered

$ qemu-system-hexagon -display

none –kernel qdsp6sw.mbn –d mmu

We control the machine but not its software -
reversed bug hunting

TLB logs during emulation

TLB size in QEMU machine definition

Get full system
Emulation

Patch for our
device

Obtain firmware

Example
problem

Step Details Screenshots

Get full system
Emulation

Patch for our
device

Obtain firmwareHacking around the TLB size yields one more line
of boot log

15

16

After the emulator runs, we deeply inspect the firmware with Ghidra

QEMU:
Emulate baseband on
unrestricted hardware

Ghidra:
Integrate Hexagon
processors in Ghidra

Clade:
Reverse-engineer
compression algorithm

LibAFL:
Coverage guided
fuzzing with QEMU

Firmware Harness:
Hook subsystem for
analysis & fuzzing

Compare
disassembly

Train Ghidra
manually

Configure memory
map

17

Problems with
reversing
using Ghidra

Fix: Configure
memory map
manually

▪ Use Ghidra with Hexagon plugin

▪ Misidentified memory segments

▪ Requires manual correction

▪ Memory segments defined by
QEMU machine

▪ Extract memory segment
details from the firmware
(mtree)

▪ Adjust memory map to set
correct start and end addresses
for the segments

Reversing the firmware with Ghidra involves
modifying the memory map

Memory segments information using mtree Memory mapping in Ghidra

Compare
disassembly

Train Ghidra
manually

Configure
memory map

Step Details Screenshots

18

Problem

Fix

▪ Gap: Ghidra misses registers, memory
addresses and VLIW boundaries

▪ Poor readability: Opcodes are less
readable compared to objdump output

▪ Validate: Use Hexagon SDK’s tool
hexagon-llvm-objdump to validate
disassembled code in Ghidra

▪ Update the register names in Ghidra, if
needed

Comparing the disassembled code with Hexagon
tools output refines the reversing efforts

Disassembled with hexagon-llvm-objdump (official Hexagon-SDK tool)

Disassembled in Ghidra with hexagon-plugin

Compare
disassembly

Train Ghidra
manually

Configure
memory map

Step Details Screenshots

19

Refine
function
naming

▪ Manually rename functions based on
our knowledge and the print statements
in the code

Renaming structs and functions in Ghidra
takes time but enhances code comprehension

Renamed functions in Ghidra

Configured structs in Ghidra

Runtime memory analysis

Compare
disassembly

Train Ghidra
manually

Configure
memory map

Step Details Screenshots

Define data-
structs

▪ Configure data types and structs based
on open-source code and header
definitions

Analyze
register states

▪ Analyze runtime register values using
QEMU to compare with the code logic

Colored opcodes in Ghidra

20

Capture the
boot trace

Create a
Ghidra script

Optimize the
script

▪ Capture full trace with QEMU monitor
and save to a file

▪ Parse the trace using a Python script

▪ Highlight: Color each memory address
reached during the boot process

▪ Scale: Update script to support multiple
threads

▪ Different colors for different threads

Bonus: Mapping boot flow with the decompiled
code calls for automation

Compare
disassembly

Train Ghidra
manually

Configure
memory map

Step Details Screenshots

We can now follow along emulator
execution in our Ghidra setup

21

Colored opcodes in Ghidra reached during the boot flow

Matching decompiled code

Compare
disassembly

Train Ghidra
manually

Configure
memory map

22

We can observe different compression mechanisms in the firmware, our next stage to tackle

QEMU:
Emulate baseband on
unrestricted hardware

Ghidra:
Integrate Hexagon
processors in Ghidra

Clade:
Reverse-engineer
compression algorithm

LibAFL:
Coverage guided
fuzzing with QEMU

Firmware Harness:
Hook subsystem for
analysis & fuzzing

Decompression
Skip
decompression

Compressed
segments

23

Deltacompress: Used to compress data in
Qualcomm firmware; tools available for
decompression

Q6zip: Used to compress code in Qualcomm
firmware; tools available for decompression

CLADE: Replaces Q6zip; requires CLADE dict
and config for decompression

CLADE2: Enhanced version of clade; utilizes
hardware for decompression

https://patentimages.storage.googleapis.com/5a/0e/7b/68e1c19996e217/US9300320.pdf

Various proprietary compression algorithms
slow the pace of reverse engineering efforts

CLADE compression algorithm

Decompression
Skip
decompression

Compressed
segments

Decompress
firmware
sections

▪ Binwalk and binutils identify compressed
sections

▪ Public tooling decompresses sections
successfully

▪ Add decompressed sections with Ghidra
Memory Manager

24

Import
sections with
Ghidra

The manual decompression of clade section
achieves partial progress, but full resolution
requires additional analysis

Binwalk output of iPhone baseband

Before decompression After decompression

Decompression
Skip
decompression

Compressed
segments

Step Details Screenshots

25

Manual flow
correction

Set breakpoint in LLDB and hotfix codeflow

Start emulation

Emulate until eternal loop/crash

Reverse engineer failed codeflow

Continue booting

Done: User mode reached

No

Yes

Using hexagon-lldb, enables dynamic analysis on
the firmware

Decompression
Skip
decompression

Compressed
segments

Finished initializing memory areas

Custom LLDB status commands for Hexagon

Step Details Screenshots

In
user

mode
?

Connecting LLDB to QEMU, we can solve code
flow errors and skip parts where needed

26

Decompression
Skip
decompression

Compressed
segments

27

After controlling the flow manually, we want full control and fuzzing with LibAFL

QEMU:
Emulate baseband on
unrestricted hardware

Ghidra:
Integrate Hexagon
processors in Ghidra

Clade:
Reverse-engineer
compression algorithm

LibAFL:
Coverage guided
fuzzing with QEMU

Firmware Harness:
Hook subsystem for
analysis & fuzzing

Instrumentation HarnessMerge codebase

28

Screenshots

libafl-qemu-
bridge

Merge
branches
manually

Feature
integration

▪ Hooks for control flow manipulation

▪ Snapshots of the process

▪ User mode emulation implemented for
hexagon

No common ancestor with Hexagon
QEMU

▪ Diff bridge against QEMU base version

▪ Apply diff on Hexagon QEMU

▪ Fix compile errors

▪ Patch in support for Hexagon system
mode support

Step Details

I

LibAFL’s QEMU provides exactly what we need
but merging it with Hexagon QEMU is hard

LibAFL QEMU architecture diagram

Instrumentation HarnessMerge codebase

29

Screenshots

Define
breakpoints

Control flow
manipulation

▪ Rust function hook in the fuzzer to handle
breakpoints

▪ Introspection in common functions like
printf

▪ JSON configuration for breakpoints

▪ Boot optimizations by skipping memory
zeroing and device initialization functions

▪ Boot progression

Step Details

Compare with
disassembled
code

▪ Colored trace analysis guides flow
manipulation

LibAFL provides hooks, which we use to
instrument the baseband boot procedure

Boot logs after control flow manipulation

JSON config

Instrumentation HarnessMerge codebase

30

Screenshots

Codebase
navigation

▪ 70k strings, 30k functions most without
references

▪ Cross reference with source code from
SDK and internet

▪ Utilize Ghidra scripting to recover
function names

▪ Compare with Qualcomm tooling e.g.
QXDM monitoring

Step Details

Creating a harness requires taming a
108MB proprietary codebase

Running processes in QXDM

Instrumentation HarnessMerge codebase

With integration of LibAFL we successfully boot
the Hexagon baseband and are ready to fuzz

31

HarnessMerge codebase Instrumentation

32

With this setup we are ready to explore the unknown

QEMU:
Emulate baseband on
unrestricted hardware

Ghidra:
Integrate Hexagon
processors in Ghidra

Clade:
Reverse-engineer
compression algorithm

LibAFL:
Coverage guided
fuzzing with QEMU

Firmware Harness:
Hook subsystem for
analysis & fuzzing

33

Introduction: Hexagon baseband

From research to tooling

Demo: Fuzzing Hexagon

Opening up baseband security

Agenda

Our Hexagon baseband fuzzer consists of following
components:

▪ Config. Set fuzzing parameters and breakpoint
addresses

▪ Harness. Rust harness to interact with LibAFL to set
breakpoints, fuzz target, monitor process and process
coverage

▪ LibAFL. Hook into firmware and introspect

▪ QEMU. Emulate the Hexagon firmware and get
coverage feedback

▪ Ghidra scripts. Improve understanding of decompiled
code and progress boot

Fuzzing the Hexagon baseband: we share our tooling

34

Architecture DiagramArchitecture Components

I

II

III

IV

V

I II

III

IV V

Demo

35

36

Introduction: Hexagon baseband

From research to tooling

Demo: Fuzzing Hexagon

Opening up baseband security

Agenda

We refine and integrate our tool to enable successful vulnerability research

37

Targeted
fuzzing

1. Map critical functions

2. Map exposure: Identify functions that can be triggered from
phone/SIM

3. Optimize fuzzing harness to dynamically adapt to the target function

Optimize
CLADE2
decompression

1. Decompress CLADE2 segments to enable proper task initialization

2. Ghidra integration: Integrate decompressed output with Ghidra to
refine decompiled code

On-device
verification

Dynamic testing on iPhone:
Trigger crashes, eg. using an SDR

Goal Approach

Integrate with
existing tools

Integrate Hexagon fuzzer with FirmWire

▪ Androm3da

▪ CUB3D

▪ domenukk

▪ Janne

▪ nlitsme

▪ nsr

▪ Mzakocs

▪ toshipiazza

▪ …

 Thank you

srlabs/hexagon_fuzz

	Default Section
	Slide 1: Securing the Airwaves Emulation, Fuzzing, and Reverse Engineering of iPhone Baseband Firmware
	Slide 2: Nice to meet you :)
	Slide 3: We start where other research projects stopped
	Slide 4: We investigate the other chip everyone has in their pocket
	Slide 5: The Qualcomm baseband exposes multiple interfaces, making it vulnerable to diverse attacks
	Slide 6: Existing baseband research does not cover Hexagon baseband full system emulation
	Slide 7
	Slide 8: Hexagon is a whole new DSP-focussed CPU architecture, prompting research from the ground again
	Slide 9
	Slide 10: We need the firmware and a customized emulator to run Hexagon on a different machine
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15: Hacking around the TLB size yields one more line of boot log
	Slide 16: After the emulator runs, we deeply inspect the firmware with Ghidra
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21: We can now follow along emulator execution in our Ghidra setup
	Slide 22: We can observe different compression mechanisms in the firmware, our next stage to tackle
	Slide 23
	Slide 24
	Slide 25
	Slide 26: Connecting LLDB to QEMU, we can solve code flow errors and skip parts where needed
	Slide 27: After controlling the flow manually, we want full control and fuzzing with LibAFL
	Slide 28
	Slide 29:
	Slide 30
	Slide 31: With integration of LibAFL we successfully boot the Hexagon baseband and are ready to fuzz
	Slide 32: With this setup we are ready to explore the unknown
	Slide 33
	Slide 34: Fuzzing the Hexagon baseband: we share our tooling
	Slide 35: Demo
	Slide 36
	Slide 37: We refine and integrate our tool to enable successful vulnerability research

