
@naehrdine.bsky.social Troopers

iOS Inactivity Reboot
Jiska Classen

Rumors on Inactivity Reboot

• iPhones on iOS 18 will reboot, even when completely isolated from wireless
networks.

• iPhones on iOS 18 will tell other iPhones on lower iOS versions to reboot –
wirelessly!

Weird story?!
Let me check diffs in
the latest release and

prove it’s fake!

ipsw diffs

Third hit: A feature called “Inactivity Reboot” 🤔

Spoiler: While this match is part of the inactivity reboot feature, it has been
introduced earlier. Here, Apple just adapted some diagnostics.

https://github.com/blacktop/ipsw-diffs – thank you for maintaning these 🤩

https://github.com/blacktop/ipsw-diffs

Before First Unlock

• User data is encrypted, with keys
secured by the Secure Enclave
Processor (SEP).

• Unlocking requires passcode and is
rate limited.

• Reduced attack surface: 
No connection to Wi-Fis, 
no preview of contact information
upon calls, no message previews, 
…

After First Unlock

• While iPhone is locked, selected
encryption keys are temporarily
erased (effaced), e.g., health data.

• Lots of data not effaced: Wi-Fi
passcodes, caller previews,
message previews, …

• Larger Remote Code Execution
(RCE) attack surface through more
available services.

Remote Code Execution

Proximity-based Attacks

When to reboot your phone?

• It has been lost 🔍

• It has been stolen 😈

• It has been taken by the
police 👮

• Before crossing a border 🌍

You’re no longer able to
reboot your phone 🤦

88:88:88
You have 72 hours to run 

a lockscreen bypass!

72:00:00

88:88:88
You have 72 hours to run 

a lockscreen bypass!

71:59:59

88:88:88
You have 72 hours to run 

a lockscreen bypass!

71:59:58

88:88:88
You have 72 hours to run 

a lockscreen bypass!

71:59:57

88:88:88
You have 72 hours to run 

a lockscreen bypass!

71:59:56

Inactivity Reboot

3-Day Inactivity Timer Timer Reset with 
SEP Unlock

keybagd

Send last unlock duration
analytics event to Apple.

Anatomy of Inactivity Reboot

Secure Enclave 
Processor

AppleSEPKeystore 
Kernel Extension SpringBoard

Secure Key Store 
(sks) Application

⏲
Last unlock > 3 days?

Ask user space to restart. Initiate graceful reboot.

Panic! 💥

Write analytics event to
NVRAM.

Reverse engineer and hope Apple 
left enough strings everywhere to 
easily guess what’s going on.

Give an iPhone a well-deserved 
rest. When would it reboot?

Sysdiagnose
01:35:14.341314 kernel void AppleSEPManager!::_notifyOSActiveGated(): SEP/OS is alive

01:35:14.341336 kernel SEP EP 18 enabled

01:35:14.341339 kernel SEP EP 10 enabled

01:35:14.341341 kernel SEP EP 9 enabled

01:35:14.341341 kernel AppleCredentialManager: getSEPEndpoint: SEPEndpoint enabled.

…

01:35:14.341697 kernel "AppleSEPKeyStore":3846:0: notifying user space of inactivity reboot

01:35:14.341757 chronod Acquiring keep-alive with reason: Work scheduling after nonwake

01:35:14.341766 kernel "AppleSEPKeyStore":12598:31: operation failed (sel: 35 ret: e00002f0)

01:35:14.341846 SpringBoard Received device inactivity notification. Rebooting!!...

All processes are terminated gracefully, as in a regular reboot.

AppleSEPKeyStore Kernel Extension

• No symbols in the iOS 18 kernel.

• macOS KDK might not implement what we’re looking for.

• iOS 16 betas had kernel symbols* – time to diff!

* Symbols are part of the embedded kernel extensions and not the main MachO.
They might not appear in some reverse engineering tools, but they are there!

iOS 16 kernel with symbols, AppleSEPKeyStore split with kextex.

Full iOS 18 kernel, diffed at places that seemed to be important. 
Did this manually, as I had some ideas what I was looking for.

Three strings related to inactivity reboot 🎉

notifying user space of inactivity reboot

• Already captured with the sysdiagnose, let’s start here!

• Called via the function AppleKeyStore!::handle_events

• Looks like a function that pulls for SEP events in the background.

AppleKeyStore!::handle_events in turn calls what I’ve named
AppleKeyStore!::handle_events_gated!__NEW_STATES_NOTIFY_REBOOT

aks-inactivity

• Device tree property that is
written directly after notifying
user space.

• This property survives the
reboot.

• keybagd reads out this
property to send an analytics
event to Apple.

Why analytics?! 📈

• How long should the timer ⏲ be?

• Tradeoff between usability and security!

• 7 days in iOS 18.0, 3 days in iOS 18.1.

• User setting in GrapheneOS: As low as 10 minutes!

max inactivity window expired, failed to reboot the device

• Causes a kernel panic in case the user-space reboot failed.

• Called via AppleKeyStore!::handle_device_state_return, which in
turn can be called through various functions. State transitions again seem to
be driven by SEP.

88:88:8872:00:00
Where is the timer?

No references to any timer-related functionality that uses
a 72h timer within the new kernel extension…

Analyzing SEP

• Apple encrypts SEP firmware 🤐

• @nyan_satan leaked SEP encryption keys for iOS 18.1 beta 6 🎉

• Previoius talk on SEP @ BH US 2016: 
SEP is organized in apps, the one for AppleSEPKeyStore is called sks

• I didn’t know there was recent tooling for SEP 🤷 (sepsplit-rs)

• Can’t be that difficult to find a 72h timer anyway, right?

SEP consists of multiple parts. Without splitting it, some references will be
inaccurate, but the automatic base detection worked for me.

The sks app is still there, does some setup, and then enters a workloop. 
Looks all right, where’s the timer?

Compilers…

int check_72h_timer(int timestamp) {
 return 3*24*60*60 > timestamp;
}

Must be 0x3f480 somewhere in the binary! 
 
Or, if not in seconds, maybe factor 1000 etc.?

check_72h_timer(int):
 sub sp, sp, #0x10
 str w0, [sp, #12]
 ldr w9, [sp, #12]
 mov w8, #0xf480
 movk w8, #0x3, lsl #16
 subs w8, w8, w9
 cset w0, gt
 add sp, sp, #0x10
 ret

…finally! 🎉

Consequences for Law Enforcement 👮

• The first who discovered this phenomenon and motivated my research.

• Must act faster to search phones, but it won’t get impossible.

• Maybe law changes towards techniques that help stopping the timer.

• Interesting times combined with Apple also killing other 
bugs exploitable for forensic analysis…

CVE-2025-24200

Consequences for Thieves 😈

• Data about you and access to your bank accounts is worth much more than a
stolen phone!

• Thieves can no longer use cheap, outdated tooling originally made for law
enforcement.

• Yes, you can buy this equipment on eBay 🤦

Thanks!

Blog post on how I reverse engineered
inactivity reboot:

https://naehrdine.blogspot.com/2024/11/
reverse-engineering-ios-18-inactivity.html

@naehrdine.bsky.social

@jiska@chaos.social

https://naehrdine.blogspot.com/2024/11/reverse-engineering-ios-18-inactivity.html
https://naehrdine.blogspot.com/2024/11/reverse-engineering-ios-18-inactivity.html

