
Adventures in SCADA
Sergey Bratus

Trust Lab, Dartmouth College

Edmond Rogers (“bigezy”)
 a Fortune 500 utility company ->

University of Illinois’ Information Trust Institute

What this talk is not
No 0days

No vendors
named

No Stuxnet

WTF?

No Stuxnet ?!

(Goto 27c3 x2:
 Bruce Dang, FX)

"SCADA in the wild"
Seeing SCADA equipment/software in its
natural habitat

it’s cruel to isolate them from their
natural inputs & surroundings :)

Seeing the operations of a control network

Fuzzing with no target instrumentation &
no protocol spec

Bonuses
Going through a man-trap
to get to a network port

Fuzzing across state lines

Fuzzing $100K+ systems

Finding out what waking
up for work at 6am feels
like :)

What the jungle looks like

What the jungle looks like

Legacy: it’s still there

What the jungle looks like

"Substation
in a corn field"

"Substation
in a corn field"

9600 baud
serial modem line

"Substation
in a corn field"

Meanwhile, at the
Control Center...

Some 100+ modem lines terminate at the
"Front End Processor" (FEP)

Meanwhile, at the
Control Center...

Front End Processor connects to an Energy
Management Server (EMS)

EMS feeds data to boards/workstations

Meanwhile, at the
Control Center...

Front End Processor connects to an Energy
Management Server (EMS)

EMS feeds data to boards/workstations

Meanwhile, at the
Control Center...

Front End Processor connects to an Energy
Management Server (EMS)

EMS feeds data to boards/workstations

"Power ties"
The closer to the control center, the more
proprietary the protocols get

Sold as (expensive!) integrated solutions
($100K+ - $1M+)

Asset owners heavily rely on vendors

Maintenance contracts, warranty, etc.

But asset owners can push back, too

SCADA owners care
Smart asset owners suspect things might
be really brittle

Hence serious investment into isolation
of control networks (+ IPSec, too)

The most paranoid production network
I've seen

...which was where we came in :)

The cause

Utility may spend at least as much on
mitigation as on original equipment!

This research was done to show the need
for such strong and meticulous measures

Defense in depth is only as good as the hole
is deep

Isolated Test
Environment

New devices and patches must be tested
before being put into service

Such a test environment was used as a
basis: isolated from production network

Took a lot of preparation and checking to
assemble the right topology

with the right geographic distances

“Fuzzing across state lines”

1: “Your fuzzer is here” A: “your FEP is here”
 (Note: these aren’t the actual locations)

Fuzzing!

Software
internals

Crafted
inputs

Yeah, fuzzing SCADA...

"Fuzzing SCADA" is old...
Ganesh Devarajan (TippingPoint)

DNP3 module for Sulley the fuzzer
 (Sulley released in 2007 by Amini & Portnoy)
Ganesh's BH 07 talk caused much media stir

Digital Bond's ICCPSic test tools
released to “vetted asset owners” subscribers
 “...will crash vulnerable ICCP servers.”

SecuriTeam's beSTORM DNP3 fuzzer
crashed Wireshark's DNP3 protocol dissector/parser

Mu Security's fuzzer hw appliance
Licensed per protocol module

Problems in the field?
Proprietary protocols => no block-based
protocol modules a-la SPIKE

Cannot instrument the targets
 (voiding $100K+ warranties is tough)

Who’s going to restart it for us when
crashed?

> 50% of fuzzing is framework setup

No problems!
This... is... SCADA!

Protocol transmissions are continuous and
repetitive, same structure

many samples of data to learn from

Watchdogs automatically restart failed
processes and systems

Frequent keep-alive/status messages

easy to see when targets crash

More SCADA goodies
Distinct handshake phase in protocols

skip it to let data connections proceed

then fuzz data parsing code

easy to recognize with packet regexps

Similar data, similar packet structure
seen over and over

really helps mutational fuzzing

GPF, mutation fuzzing
“General Purpose Fuzzer”

fuzzes saved network protocol sessions

useful heuristics for inserting runs of
random or special bytes

“Aitel had it right
with SPIKE”

We’d like to know the blocks of the protocol

must match them closely enough to cover
code paths past simple sanity checks

How to guess blocks of unknown protocol?

well, just roughly enough to fuzz them :)

sanitize
business

logic

Target process

input

LZfuzz, a “lazy hack”
Guesses blocks (“tokens”) based on
repeated occurrence, a-la GZIP

runs a variant of the Lempel-Ziv compression
algorithm
frequently repeated byte strings end up in a
string table
seeds the table with likely tokens/blocks from
packet captures

Applies GPF’s heuristic mutations
to tokens:

long ASCII byte runs for buffers overruns
extra delimiters, bit flips, ...

LZfuzz

IPQueue + per-packet
LZ tokenizer + GPF

Recap
Cannot instrument endpoints, must infer
state of target processes/OS:

unexpected TCP RSTs, repeated SYNs

special auth handshakes pre- data sessions

timeouts

Must adapt & back-off to allow watchdogs to
reset targets & rebuild connections

Must hypothesize checksum kinds & places

LZfuzz 2.0
Connection state inference rules

Automatic checksum detection & fix-up

Coverage?
Tried non-SCADA targets:

DAAP (iTunes) OSCAR (Pidgin)

Validation for utility

Mitigating controls to prevent
injection of packets into the
control network

Paranoia justified

The future?

The future?

The future?
Composition is how humans
do engineering

But “Security
 is not composable”

Composing well-
understood parts may
yield a new system with
deadly properties

“Complexity Kills”

“Wrong threat model”

Smart Grid!
It’s “smartER grid”, thank you very much

“Tens of millions” of devices!

or 100M, whichever you
feel like

Not just “smart meters”:
phasors, relays, “intelligent
electronic devices”, ...

(2b || ! 2b) * 100M
To remote admin or not to
remote admin?

To trust or not to trust
(the network environment)?

To trust or not to trust
(remote systems)?

Will old engineering solutions
scale up to 100M?

When we have 100M
computers...

How do we extend trust to them?

How do we keep all of them
trustworthy?

When we have 100M
computers...

Should they have remote administration
interfaces to get configured, patched,
and upgraded?

YES: huge network attack surface

NO: be prepared to lose/replace entire
generations, often
 [“evolution” = “stuff dies out”]

 -- Dan Geer, SOURCE Boston, ‘08

When we network
100M computers...

How do we commission/config/replace them?

Must be easy, not require special training
(e.g., in a Home Area Network)

“Plug it in, it just works” =>

Devices must TRUST their network
environment to learn configs from it
(e.g.,: IPv6 auto configuration)

“Just trust the first
message” vs. key mgmt

The only way to authenticate a message is
to share a secret (or public key) with the
trusted origin/environment

How will this secret get to the new device?

human_op * 100M =

Can we authenticate
100M devices?

What would managing 100M keys cost?

support

remote
replacement?

A utility’s
PKI experience:
keys are
costlier than
devices!

“C”, confidentiality:
Crypto Chicken vs. Egg

Key material to secure
link layer (L2)

...is exchanged via
protocols in L3!

programming with
drivers/frames rather
than sockets sucks

“I”, integrity:
Run twice as hard to

remain in place
How much to:

push patches * 100M = ?

runtime integrity computation
CPU cost * 100M = ?

maintain white list of trusted configs ?

...and other fun
adventures...

Thank you!

More Information

More research & industry interaction info:

Trustworthy Cyber Infrastructure for the
Power Grid (TCIPG) project:

 http://www.tcipg.org/

Disclaimer: This talk presents only the authors’ positions,
not those of sponsors or other organizations.

http://www.tcipg.org
http://www.tcipg.org

