Recent IPv6 Standardization Efforts

Fernando Gont

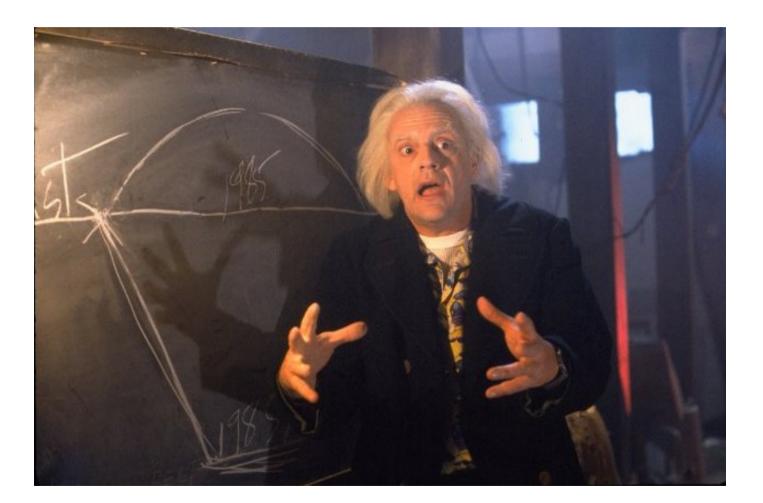
About...

- Security Researcher and Consultant at SI6 Networks
- Published:
 - 25 IETF RFCs (13 on IPv6)
 - 10+ active IETF Internet-Drafts
- Author of the SI6 Networks' IPv6 toolkit
 - http://www.si6networks.com/tools/ipv6toolkit
- I have worked on security assessment of communication protocols for:
 - UK NISCC (National Infrastructure Security Co-ordination Centre)
 - UK CPNI (Centre for the Protection of National Infrastructure)
- More information at: http://www.gont.com.ar

Motivation for this work

IPv6 Security Summit @ Troopers16 Heidelberg, Germany. March 14-15, 2016

 $\ensuremath{\mathbb{C}}$ 2016 SI6 Networks. All rights reserved


Motivation

- TCP & IPv4 were introduced in the early '80's
- Yet in the late '90s (and later!) we were still addressing security issues
 - SYN flood attacks
 - Predictable TCP Initial Sequence Numbers (ISNs)
 - Predictable transport protocol ephemeral port numbers
 - IPv4 source routing
 - etc.
- Mitigations typically researched **after** exploitation
- Patches applied on production systems

Motivation (II)

• We hope to produce an alternative future for IPv6

IPv6 Security Summit @ Troopers16 Heidelberg, Germany. March 14-15, 2016

Part I: Protocol Issues

IPv6 Security Summit @ Troopers16 Heidelberg, Germany. March 14-15, 2016

 $\ensuremath{\mathbb{C}}$ 2016 SI6 Networks. All rights reserved

IPv6 Addressing Brief overview

IPv6 Security Summit @ Troopers16 Heidelberg, Germany. March 14-15, 2016

IPv6 Global Unicast Addresses

n bits	m bits	128-n-m bits
Global Routing Prefix	Subnet ID	Interface ID

- A number of possibilities for generating the Interface ID:
 - Embed the MAC address (traditional SLAAC)
 - Embed the IPv4 address (e.g. 2001:db8::192.168.1.1)
 - Low-byte (e.g. 2001:db8::1, 2001:db8::2, etc.)
 - Wordy (e.g. 2001:db8::dead:beef)
 - According to a transition/co-existence technology (6to4, etc.)
 - Random and constant (MS Windows)
 - Random and temporary (RFC 4941)

IPv6 Addressing Overview of Security Implications

Sec/Priv Implications of IPv6 Addressing

- Correlation of network activity over time
 - 'cause the IID does not change over time
- Correlation of network activity across networks
 - 'cause the IID does not change across networks
 - e.g. 2001:db8::**1234:5678:90ab:cdef** vs. fc00:1::**1234:5678:90ab:cdef**
- Network reconnaissance
 - 'cause the IIDs are predictable
 - e.g. 2001:db8::**1**, 2001:db8::**2**, etc.
- Device specific attacks
 - 'cause the IID leaks out the NIC vendor
 - e.g. 2001:db8::**fad1:11**ff:fec0:fb33 -> Atheros

IETF work in this area

- **RFC 7721:** "Security and Privacy Considerations for IPv6 Address Generation Mechanisms"
- **RFC 7707:** "Network Reconnaissance in IPv6 Networks"

IPv6 Addressing Mitigation of Security Issues

IPv6 Security Summit @ Troopers16 Heidelberg, Germany. March 14-15, 2016

 $\ensuremath{\mathbb{C}}$ 2016 SI6 Networks. All rights reserved

Temporary Addresses (RFC4941)

- RFC 4941: privacy/temporary addresses
 - Random IIDs that change over time
 - Generated **in addition** to traditional SLAAC addresses
 - Traditional addresses used for server-like communications, temporary addresses for client-like communications
- Operational problems:
 - Difficult to manage!
- Security problems:
 - They do not fully replace the traditional SLAAC addresses (hende host-tracking is **only partially mitigated**)
 - They **do not** mitigate host-scanning attacks

Auto-configuration address/ID types

	Stable	Temporary
Predictable	IEEE ID-derived	None
Unpredictable	RFC7217	RFC 4941

- We used to lack stable privacy-enhanced IPv6 addresses (a la RFC7217):
 - Used to replace IEEE ID-derived addresses
 - Pretty much orthogonal to privacy addresses
 - Probably "good enough" in most cases even without RFC 4941

RFC7217: SLAAC stable-privacy

- RFC published in April 2014
- Generate Interface IDs as:

F(Prefix, Net_Iface, Network_ID, Counter, Secret_Key)

- Where:
 - F() is a PRF (e.g., a hash function)
 - Prefix SLAAC or link-local prefix
 - Net_Iface is some interface identifier
 - Network_ID could be e.g. the SSID of a wireless network
 - Counter is used to resolve collisions
 - Secret_Key is unknown to the attacker (and randomly generated by default)

RFC7217: SLAAC stable-privacy (II)

- As a host moves:
 - Prefix and Network_ID change from one network to another
 - But they remain constant within each network
 - F() varies across networks, but remains constant within each network
- This results in addresses that:
 - Are stable within the same subnet
 - Have different Interface-IDs when moving across networks
 - For the most part, they have "the best of both worlds"

RFC7217: implementation status

- There are at least three different implementations
- Linux kernel

http://www.spinics.net/lists/netdev/msg322123.html

NetworkManager

https://blogs.gnome.org/lkundrak/2015/12/03/networkmanager-andprivacy-in-the-ipv6-internet/

dhcpcd

draft-gont-dhcpv6-stable-privacyaddresses

- Originally adopted as draft-ietf-dhc-stable-privacy-addresses
 - Subsequently dropped (!?)
- Generate DHCPv6 Interface IDs as:

F(Prefix | Client_DUID | IAID | Counter | secret_key)

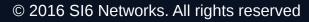
- Where:
 - F() is a PRF (e.g., a hash function)
 - Client_DUID is the Client's DHCPv6 DUID
 - Net_Iface is some interface identifier
 - Counter is employed to resolve collisions
 - Secret_Key is unknown to the attacker (and randomly generated by default)

draft-gont-dhcpv6-stable-privacyaddresses (II)

- Allows for multiple DHCPv6 servers to operate within the same subnet
- Even if the DHCPv6 lease file gets lost/corrupted, addresses will be stable
- State about address leases is shared "algorithmically"
 - No need for a new protocol

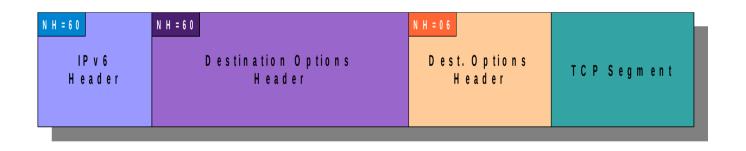
Procedural "caveats"

- RFC 7217 specifies an algorithm, but does not mandate implementation
- draft-ietf-6man-default-iids
 - Notes that implementations should default to RFC 7217
 - Document has been stalled for a while now

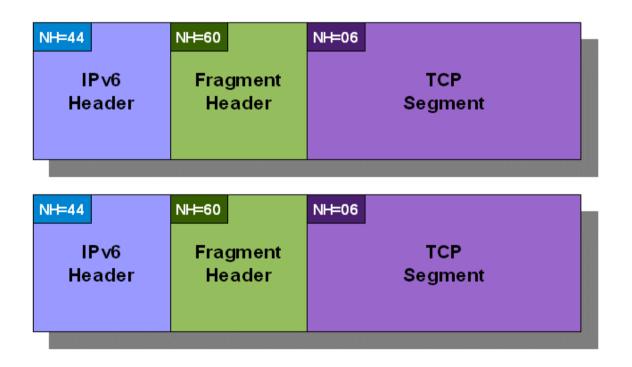

IPv6 Extension Headers

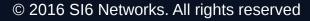
IPv6 Security Summit @ Troopers16 Heidelberg, Germany. March 14-15, 2016

 $\ensuremath{\mathbb{C}}$ 2016 SI6 Networks. All rights reserved


IPv6 Extension Headers Theory

IPv6 Extension Headers

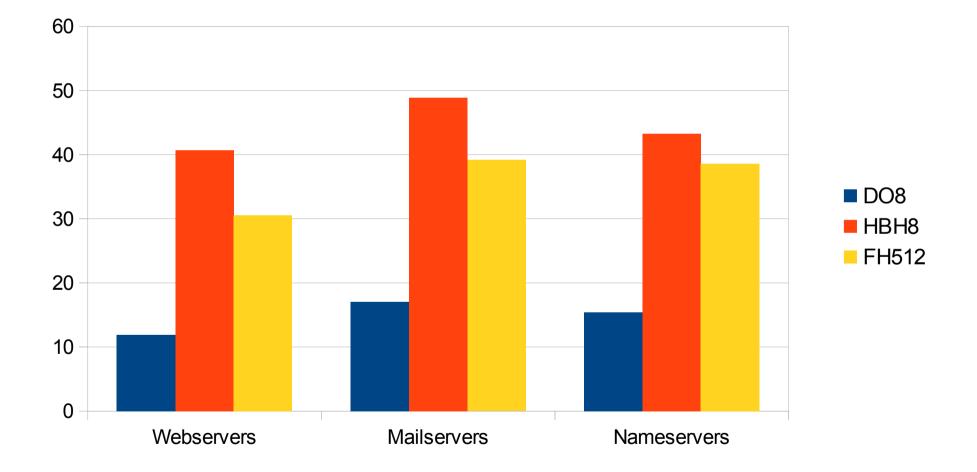

- Fixed-length base header
- Options conveyed in different types of Extension Headers
- Extension Headers organized as a daisy-chain structure


IPv6 Fragmentation

- Conceptually, same as in IPv4
- Implemented with an IPv6 Fragmentation Header

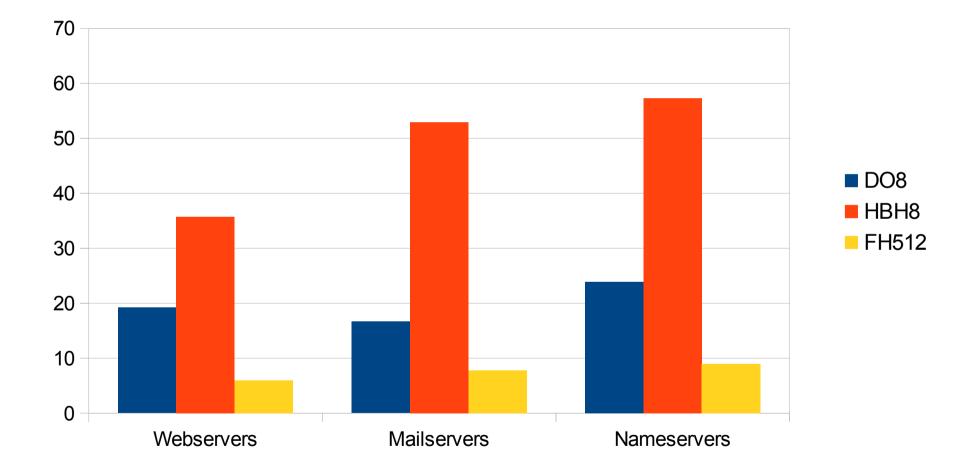
IPv6 Extension Headers In the Real World

draft-gont-v6ops-ipv6-ehs-in-real-world

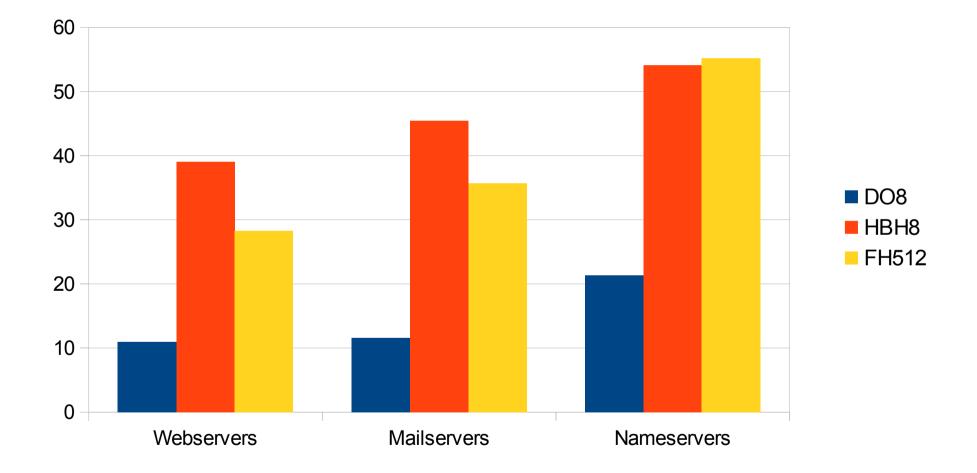

- Years ago there were comments about operators filtering IPv6 fragments
 - See e.g. draft-taylor-v6ops-fragdrop-02
- However, there wasn't much data about the drops
- I decided to measure support for EHs in the "real world"
 - Both for fragmentation and for other EHs
 - Results were that bad that, initially I thought there was a bug in my tool!

draft-gont-v6ops-ipv6-ehs-in-real-world (II)

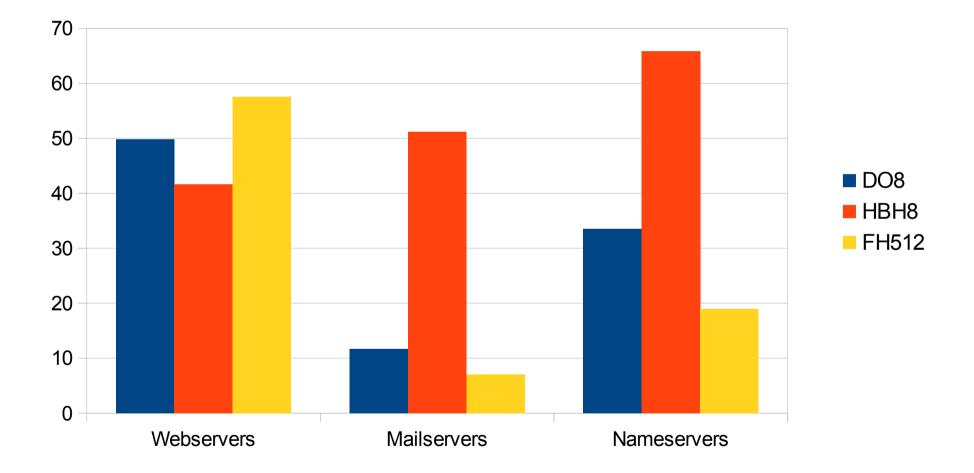
- draft-gont-v6ops-ipv6-ehs-in-real-world
 - Documents the measurement procedure
 - Documents the results



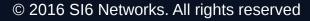
WIPv6LD dataset: Packet Drop rate


WIPv6LD dataset: Drops by diff. AS

IPv6 Security Summit @ Troopers16 Heidelberg, Germany. March 14-15, 2016


Alexa dataset: Packet Drop rate

IPv6 Security Summit @ Troopers16 Heidelberg, Germany. March 14-15, 2016


Alexa dataset: Drops by diff. AS

IPv6 Security Summit @ Troopers16 Heidelberg, Germany. March 14-15, 2016

IPv6 Extension Headers Security & Operational Implications

draft-gont-v6ops-ipv6-ehs-packet-drops

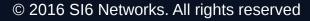
- Discusses security and operational implications of EHs
- It explains why some operators may want to drop these packets

Security Implications

- Evasion of security controls
- DoS due to processing requirements
- DoS due to implementation errors
- Extension Header-specific issues

Operational Implications

- Some middle-boxes and intermediate systems need to obtain layer-4 information
- When they are unable to obtain that information, they may drop the corresponding packet
 - Packet Forwarding Engine Constraints
- Requirement to process layer-4 information:
 - Enforcing infrastructure ACLs
 - DDoS Management and Customer Requests for Filtering
 - ECMP and Hash-based Load-Sharing


EHs: Why you meed need to drop

- Route-Processor Protection
 - In some implementations, processing the EH chain may punt the packet to a software path
 - HBH Options EH proves to be particularly challenging

EHs: Why you may need to drop (II)

- Inability to Perform Fine-grained Filtering
 - In some implementations, processing the EH chain may punt the packet to a software path
 - HBH Options EH proves to be particularly challenging

IPv6 Extension Headers Fragment Header

IPv6 Fragmentation Overview

- IPv6 fragmentation performed only by hosts (never by routers)
- Fragmentation support implemented in "Fragmentation Header"

	8 bits	8 bits	13 bits	2b 1b	
	Next Header	Reserved	Fragment Offset	Res M	
	Identification				

- Where:
 - Fragment Offset: Position of this fragment with respect to the start of the fragmentable part
 - M: "More Fragments", as in IPv4
 - "Identification": Identifies the packet (with Src IP and Dst IP)

Fragmentation: Security Implications

- Fragmentation known to be painful for NIDS
- Fragment reassembly is a state-full mechanism
 - Potential for DoS attacks
- Predictable Fragment IDs well-known from the IPv4 world
 - idle-scanning
 - DoS attacks (fragment ID collisions)
- Situation exacerbated by larger payloads resulting from:
 - Larger addresses
 - DNSSEC
- But no worries, since we learned the lesson from the IPv4 world... – right?

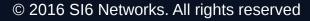
Fragment ID generation policies

Operating System	Algorithm	
FreeBSD 9.0	Randomized	
NetBSD 5.1	Randomized	
OpenBSD-current	Randomized (based on SKIPJACK)	
Cisco IOS 15.3	Predictable (GC init. to 0, incr. by +1)	
Linux-current	Unpredictable (PDC init. to random value)	
Solaris 10	Predictable (PDC, init. to 0)	
Windows 7 Home Prem.	Predictable (GC, init. to 0, incr. by +2)	

GC: Global Counter PDC: Per-Destination Counter

At least Solaris and Linux patched in response to our IETF I-D – more patches expected!

Mitigating predictable Frag. IDs


- Goal: Make the Fragment Identification unpredictable
- Border conditions:
 - Identification value is 32-bit long, but...
 - Translators only employ the low-order 16 bit
 - A Frag ID should not be reused too frequently
- Possible schemes
 - Simple randomization
 - More "elaborate" randomization schemes
 - Hash-based

IETF work in this area

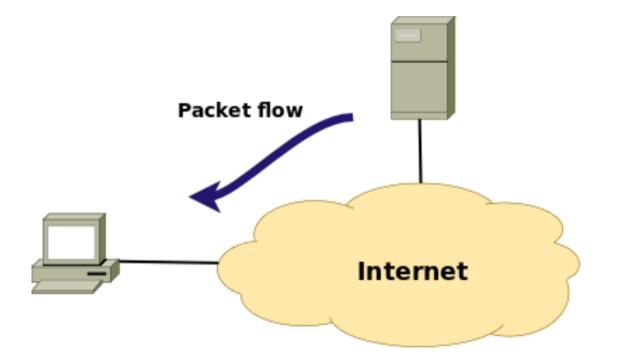
- New: RFC 7739: "Security Implications of Predictable Fragment Identification Values"
 - Discusses the security implications f predictable Frag IDs
 - Proposes a number of algorithms to generate the Frag ID
- draft-ietf-6man-rfc2460bis
 - Revision of "Internet Protocol, Version 6 (IPv6) Specification"
 - Removes the suggestion of using a global counter for the Frag ID

IPv6 Extension Headers Atomic Fragments

Atomic fragments

- Atomic fragments: a complete packet that includes a fragment header (FO: 0, MF: 0)
- Generated upon receipt of MTU<1280

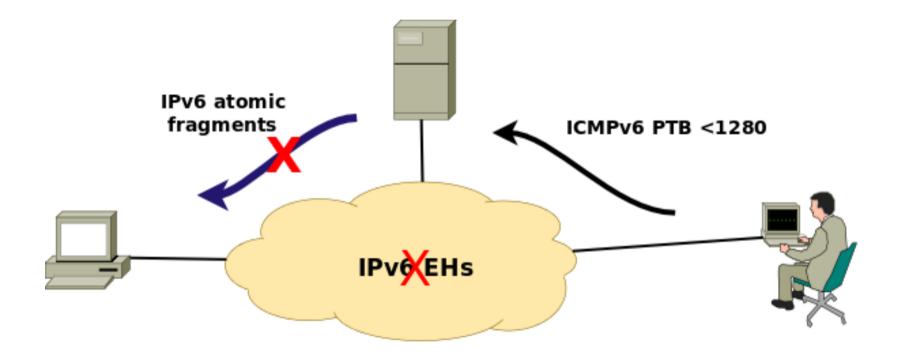
Atomic fragment



Atomic fragments (II)

- Employed by translators (RFC 6145)
 - No other use!
- Due to widespread filtering of EHs, their use is not reliable
- Furthermore, they can be leveraged for DoS attacks

Attack Scenario #1


• Client communicates with a server

Attack Scenario #1 (II)

• Attacking client-server communications

Attack scenario #1 (III)

- Simple way to reproduce it:
 - Attack and client machine is the same one
 - So we attack our own "connections"
- Attack:
 - Test IPv6 connetivity:

telnet 2001:4f8:1:10:0:1991:8:25 80

• Send an ICMPv6 PTB < 1280 to trigger atomic fragments

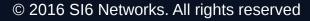
sudo icmp6 --icmp6-packet-too-big -d
2001:4f8:1:10:0:1991:8:25 --peer-addr
2001:5c0:1000:a::a37 --mtu 1000 -o 80 -v

• Test IPv6 connectivity again:

telnet 2001:4f8:1:10:0:1991:8:25 80

Attack scenario #2: Lovely BGP

- Say:
 - We have two BGP peers
 - They drop IPv6 fragments "for security reasons"
 - But they do process ICMPv6 PTBs
- Attack:
 - Fire an ICMPv6 PTB <1280 (probably one in each direction)
- Outcome:
 - Packets get dropped (despite TCP MD5, IPsec, etc.)
 - Denial of Service



IETF work in this ares

- draft-ietf-6man-deprecate-atomfrag-generation
 - Provides all the rationale for deprecating this functionality
 - Has passed WGLC
- draft-bao-v6ops-rfc6145bis
 - Revision of "IP/ICMP Translation Algorithm"
 - Eliminates reliance on IPv6 atomic fragments
 - It's in under IESG evaluation
- draft-ietf-6man-rfc2460bis
 - Revision of "Internet Protocol, Version 6 (IPv6) Specification"
 - Removes support for the generation of IPv6 atomic fragments

IPv6 Standardizaton Efforts Part II: Operational Issues

IPv6 First Hop Security

IPv6 Security Summit @ Troopers16 Heidelberg, Germany. March 14-15, 2016

 $\ensuremath{\mathbb{C}}$ 2016 SI6 Networks. All rights reserved

DHCPv6-Shield

- IPv6 version of IPv4's DHCP snooping
 - ... or RA-Guard for DHCPv6

...or "how to block DHCPv6 packets at a layer-2 device"

 New: RFC 7610: "DHCPv6-Shield: Protecting Against Rogue DHCPv6 Servers"

Some conclusions

IPv6 Security Summit @ Troopers16 Heidelberg, Germany. March 14-15, 2016

 $\ensuremath{\mathbb{C}}$ 2016 SI6 Networks. All rights reserved

Some conclusions

- Many IPv4 vulnerabilities have been re-implemented in IPv6
 - We just didn't learn the lesson from IPv4, or,
 - Different people worked in IPv6 than in IPv4, or,
 - The specs could make implementation more straightforward, or,
 - All of the above? :-)
- Still lots of work to be done in IPv6 security
 - We all know that there is room for improvements
 - We need IPv6, and should work to improve it

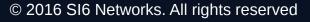
Questions?

IPv6 Security Summit @ Troopers16 Heidelberg, Germany. March 14-15, 2016

 $\ensuremath{\mathbb{C}}$ 2016 SI6 Networks. All rights reserved

Thanks!

Fernando Gont


fgont@si6networks.com

IPv6 Hackers mailing-list

http://www.si6networks.com/community/

www.si6networks.com

