Future Directions in Malware Detection on Mobile Handsets

Leaving the as-is state for the better?

André Egners, RWTH Aachen

ASMONIA

- Funded by German government
- Industry, Research, Telco, Government
- Attack Analysis and Security Concepts for MObile Network Infrastructures supported by collaborative Information Exchange
 - Network infrastructure
 - HeNB, eNB, SAE-GW, ...
 - User equipment
 - Phones, dongles, Smartphones (this talk)
- What's my task in ASMONIA?
 - Security mechanisms on Smartphones
 - (New) infection vectors
 - Malware detection on UE and NE

Disclaimer

This talk is not "the solution" but rather to raise awareness and inspire ideas

Outline

- Introduction
- Motivation
- The Problems
- Alternative mechanisms
- Deployment ideas
- Open problems

Smartphones

- Multi-purpose
- Mobile internet
- GPS, WLAN, ...
- 3rd party apps
- More computer than phone
- "Unmanaged mess" (Enno)

Tales from the "Smartphone Hell"

First SMS Trojan detected for smartphones running Android

August 19, 2010, 11:35AM

iPhones, BlackBerrys, Droids Becoming a Moveable Feast for Attackers

March 2, 2011, 3:19PM DroidDream Attack Underscores Weaknesses of App Stores

March 3, 2011, 12:17PM

Analysis Shows DroidDream Trojan Designed for Future Monetization

T SEC

More Hellish Tales

The General Problems

- Malware, Trojans, (viruses)
- Issues with current detection from classical IT
 - Signature-based
 - Aftercare
 - External experts
 - Computation and storage overhead
- May not be suited for Smartphones
 - Still significantly slower
 - Frequent scanning is energy intensive

Smartphone Induced Challenges

- Many different OSs
- Many different software distribution paths
- Many different communication interfaces
 - 2/3/4G, Wi-Fi, BT, (NFC)
- Many different hardware vendors
 - ACER, Samsung, HTC, LG, Motorola, ...
 - Different OS image
 - Different update cycle
- Even OS distributors may stop updating older devices
- Android: Inflationary usage of permissions

Attacks

- Privacy leakage
- Battery depletion
- Send SMS messages
- Infect files
- Spread to PC
- Block functionality
- Change user settings

- Demand money and delete incoming and outgoing SMS
- Disable / fake AV products
- Monitor user
- Damage user data
- Cause damage to xG network (Botnets)

IT SEC

Alternative Detection Methods

- Monitor behavior
 - Of user
 - Of app
 - Of Phone
 - • •
- Compare monitored traces to model
 - Resembles benign behavior
 - May point out unknown/suspicious incidents
 - Iterative learning
- Profit from data mining research
- Allows partial matching wrt. known good behavior

Roadmap

- Energy-greedy malware (2008)
- Symbian OS monitoring (2008)
- SMS-Watchdog (2009)
- User & App correlation (2010)
- General machine learning (2010)

Energy Greedy Malware [KSK08]

- Initial motivation:
 - Improve effectiveness to detect new outbreaks
- Focus on energy depletion threats
- Power monitor
 - Collects power samples and builds history
 - Based on available CE .Net API
- Data analyzer
 - Power signature generation & matching
 - Local or remote processing
- Experiments on HP iPAQ (WM5)

Energy Greedy Malware [KSK08]

IT SEC

Energy Greedy Malware [KSK08]

- Is energy really scarce?
 - How many mini-/micro USB cables do you have on you right now?
 - Free USB power outlets in airports
- Kind of outdated
 - Assumes one running app
- It's not really the business model of (Botnet) malware to make a host go offline

Monitoring Smartphones ... [SPAL08]

- Symbian-based monitoring
- Move processing to remote system (newspeak: cloud)
 - Less processing power on phone
 - Less storage on phone
 - Secure always-on connection
- Fingerprinting the app
 - RAM FREE
 - USER INACTIVITY
 - PROCESS COUNT
 - CPU USAGE
 - SMS SENT COUNT

Monitoring Smartphones ... [SPAL08]

SMS Sending vs. SMS-Malware

Monitoring Smartphones ... [SPAL08]

- Demonstration of "app fingerprinting"
 - Apps affect features in distinct ways
- Verification by "Button-2-pressed-Send-SMS"-malware
- Remote processing may cause additional risks
- How well does it work across different phones?

SMS-Watchdog [YEG09]

- Focus on SMS-based attacks and spreading
 - SPAM (unwanted, costly, increased netload)
 - Spoofing (of senders, potentially useful for phishing)
 - Flooding (increased netload)
 - Faking (mimicking SMSC behavior)
- Collect SMS traces of users
- System is deployed on SMSC (NE)
- Detect deviation from known behavior profile
 - 1. Monitor user for some time
 - 2. Anomaly detection at intervals
 - **3.** Inform user about possible malware

SMS-Watchdog [YEG09]

IT SEC

SMS-Watchdog [YEG09]

- High variation unsuited for detection model
- Improvement by computing similarities between monitor windows
- Min # SMS required to make model work
- Unclear how to obtain the "normal"-trace
- Model needs extensive training per user
- Are there legal implications?

pBMDS [XSZZ10]

Behavioral differences between:

malware and users

- Correlating user input and syscalls
 - Process state transitions
 - User operational patterns
- Scope:
 - Real phone evaluation
 - MMS & BT spreading
 - Application level attacks

pBMDS [XSZZ10]

User action => series of syscalls unique to action

Deviation from regular behavior

pBMDS [XSZZ10]

- Input events can be simulated by (smart) malware
- SMS sequenced behavior is biased
- Turing test deals with false positives
- Intrusive mechanism (kernel hooks)

IT SEC

Anomaly Detection ... [ABS10]

General model

- Based on device usage patterns
- "Observable features" mapped to vector
- Experimenting with similarity measures
 - ECD (6-dim & 40-dim)
 - Mahalanobis distance (6-dim)
 - Self-organizing maps (6-dim)
 - Kullback-Leibler divergence (6-dim)

Anomaly Detection ... [ABS10]

1000 sample normal usage pattern

Anomaly Detection ... [ABS10]

- Remote processing
- Training data is highly biased
 - Public MIT volunteer data set
 - Calls, SMS, and data communication logs
- Verification by "Button-2-pressed-Send-SMS"-malware
- Challenge of non-stationary usage behavior
 - E.g., new apps

Methods Summary

- Basically feature extraction is done on
 - User behavior
 - System behavior
 - Application behavior
- Communication monitoring
 - SMS, Bluetooth, WLAN, etc.
- Application of classification and clustering methods
 - Support vector machines: Good/Bad behavior classes
 - Probabilistic learning
- General fine tuning of matching methods

so now what needs to be done to put these mechanisms to work?

Deployment Ideas

Think telco

- Large user base
- Monitoring is possible
- Use branding as a basis?
- Think app store
 - Large user base
 - Initial good behavior could be supplied along with app
 - How to trust this?
 - Feedback loop from user behavior
- Think OS
 - Why not push security updates as in Linux distributions

Open Issues

- Signature-based detection rarely has false alarms
- Is the user feedback loop useless?
 - The "ok, leave me alone"-hazard
- Sanity check of detector by asking user
 - "Do you think this is suspicious?"
- Which inputs are "good"?
 - Fight the bias
- Where to monitor?
 - Local vs. in network
- Where to process?
 - Local vs. remote
- Risks of monitoring?
 - Trust, Privacy?

Open Issues (2)

- Statistical methods lack semantic capabilities and contextual information
 - Challenge to distinguish rare behavior from malware
- Can we use in-place security mechanisms as sensors?
 - Permissions
 - Integrity checks
 - Trusted boot
 - **.**...
- How to keep up with the progress

To-do

- Experimentation and practical validation is needed
- Research across platforms
- Consider new input for monitoring
 - overwriting and accessing specific files
 - Voice, Data, downloading from suspicious sources
 - • •
- App profiling
- Keep up with the progress on Smartphones ;)

Thanks for the attention

André Egners egners@umic.rwth-aachen.de

References

[ABS10] Alpcan et al., A Probabilistic Diffusion Scheme for Anomaly Detection on Smartphones, WISTP 2010
[KSS08] Kim et al., Detecting Energy-Greedy Anomalies and Mobile Malware Variants, MobiSys 2008
[SPAL08] Schmidt et al., Monitoring Smartphones for Anomaly Detection, Mobilware 2008
[XSZZ10] Xie et al., pBMDS: A Behavior-based Malware Detection System for Cell Phone Devices, WiSec 2010
[YEG09] Yan et al., SMS-Watchdog: Profiling Behaviors of SMS Users for Anomaly Detection, RAID 2009 Me

IT SECURITY RESEARCH GROUP

- Obviously IT-Security interested
- CS Diploma from Aachen with (anonymity) networking background
- Now PhD studies @ ITSec Research Group
- Field of research: <u>Security in wireless networks</u>
 - Key Management
 - Security Bootstrapping
 - IDS / Monitoring
 - 4G networks and phones (ASMONIA)