

 INTRO
Graeme Neilson
Security Researcher / Consultant
o  Reverse Engineering
o  Cryptography
o  Network Infrastructure

graeme@aurasoftwaresecurity.co.nz

Andy Prow
Managing Director

o Security Training
o Social Engineering

andy@aurasoftwaresecurity.co.nz

Aura Software Security, New Zealand

SYNOPSIS

o  Uses

o  Principles

o  Hashes

o  Symmetric Ciphers

o  Public Key Crypto

o  Crypto Challenge

o  Conclusions

USES

o  Integrity - Hash

o  Confidentiality -–Symmetric Encryption

o  Authentication -–Hash, Public Key Crypto

o  Non-Repudiation - Public Key Crypto

o  Key Exchange - Public Key Crypto

Kerckhoffs’ Principle

Auguste Kerckhoffs, 1883

The security of a system should reside

only in the key

Disco Principle

Don't Invent Super Crypto of your Own

HASHES
o  One way functions - non reversible - fixed size output

o  Easy to compute for any message

o  Infeasible to find a message that has a specific hash

o  Infeasible to modify a message without changing the hash

o  Infeasible to find different messages with the same hash

Algorithms:
MD2, MD4, MD5, SHA

PASSWORD
PROBLEM

Passwords stored in clear text in the database

STORE HASH

o  Store a hash of the password

o  Compare hashes

MAKE HASH

o  All common platforms contain crypto libraries

o  Use this library code

o  It is simple code

o  Just slect your algorithm

RAINBOW TABLES

o  Precompute hashes for a set of passwords

o  Set of passwords defined by max length & character set

o  Time versus memory trade off - less CPU more Storage

Algorithm:
o  Password is converted to uppercase

o  Null-padded to 112 bits

o  Split into two 56 bit values

o  Each 56 bit value has null bits inserted every seven bits to create a 64 bit key”

o  The constant string KGS!@#$%”is DES encrypted with each of the keys

o  The two ciphertext values are concatenated to form the 128 bit LM hash

Weaknesses:
o  Limited character set

o  Passwords > 7 chars split in two and hashed separately

o  No salt

MS LANMAN

RANDOM SALTS
o  Solution is store a salt with the hash of the password

o  Append salt to password before hashing

MAKE SALTED HASH
o  Use a cryptographicaly secure pseudorandom number generator!

o  System.random is NOT random!

Password Hashing Algorithm:

o  MD5 hash of username + ':Administration Tools:'”+ password
o  Base64 encode the hash
o  Insert the characters 'n' 'r' 'c' 's' 't' 'n'’’’

Examples:
 nJ8aK7rVOo1Ico6CbsQFKNCtviAjTn
 nPZmEerYEtdHcanJhsHGsSBtkrAV4n
 nKqqMDroCJPBc8lF2smLmCMtnNCHRn
 nNtMGWrpGPFJcNuMTsJKyPEtPhHVln
 nKfNBWrbFpzNcaZAJs6M18HteGPUmn
 nGH8EvrtD3/Dc4JDrsZEzyMtiFKLtn

Weaknesses:

o  It's MD5!
o Salt is username and constant string - NOT random!

JUNIPER NETSCREEN

 MD5 or SHA?
o  MD5 is not collision resistant
o  Different files with the same hash can be created
o  Different certificates with the same hash can be created
o  MD5 is 128 bit and is less resistant to brute force (GPU)

o  Use SHA-2 family
 SHA-256, SHA-512

SYMMETRIC CIPHERS
 The same key is used for encryption and decryption

o  Lots of stream and block ciphers to choose from:

SERPENT, TWOFISH, DES, 3DES, IDEA, RC4, RC5,
RC6, AES, TWOFISH, BLOWFISH...

o  Rijndael (aka AES) won the NIST Advanced Encryption
Standard competition to replace the Data Encryption
Standard (DES)

FORMS AUTH

// Create Key
KeyGenerator kg = KeyGenerator.getInstance(“AES");
SecretKey secKey = kg.generateKey();

// Create Cipher
Cipher aes = Cipher.getInstance(“AES/CBC/PKCS5Padding");
aes.init(Cipher.ENCRYPT_MODE, secKey);

// Create stream
FileOutputStream fos = new FileOutputStream(aesFile);
BufferedOutputStream bos = new BufferedOutputStream(fos);
CipherOutputStream cos = new CipherOutputStream(bos, aes);
ObjectOutputStream oos = new ObjectOutputStream(cos);

MAKE KEY
o  Use Cipher Block Chaining (CBC) not Electronic Code

Book (ECB)
o  Initialisation Vector (IV) must be random and not reused
o  Java & .Net create random IVs for you

ADOBE ACROBAT
o  Acrobat 2.0 - 6.0 RC4 / MD5 40 bit encryption

o  Acrobat 7.0 - 8.0 AES 128 bit encryption

o  Acrobat 9.0 - AES 256 & 128 bit encryption

o  Adobe 9 made the encryption function more efficient

o  Much faster to brute force ACROBAT AES 256 than
ACROBAT AES 128

PUBLIC KEY CRYPTO
Public Key for encryption and a Private Key for decryption

 The key pairs are mathematically related such that using the key pair

together achieves the same result as using a symmetric key twice.

o  Relies on mathematical operations that require 'little work' but

whose inverse operations take 'lots of work’

o  Testing if a number is prime or multiplying two prime numbers takes

little work

o  Prime factoring a large integer takes a LOT of work.

//Generate a key pair

KeyPairGenerator keyGen = KeyPairGenerator.getInstance("DSA”, "SUN");

SecureRandom random = SecureRandom.getInstance("SHA1PRNG”, "SUN");

keyGen.initialize(1024, random);

KeyPair pair = keyGen.generateKeyPair();
PrivateKey priv = pair.getPrivate();
PublicKey pub = pair.getPublic();

//Create a Signature object, initialize it with the private key

Signature dsa = Signature.getInstance("SHA1withDSA", "SUN");

dsa.initSign(priv);

MAKE KEY PAIR
o  Random Random RANDOM!

o All keys generated on Debian systems Sep 2006 - May 2008.

o  To fix unitialised variable Debian patched OpenSSL.

o  The seed for the random number generator became the curent PID
(1 to 32768)

o  For each (algorithm & key size) only 32767 key values AND:

•  Keys generated at boot time < 500 value

•  User generated keys probably 500-10,000

•  Most keys probably 1-3000 value

DEBIAN V OPENSSL

o Only signed executables should be run

o Elliptic Curve Digital Signature Algorithm used to make keys

o  The required random number is always the same.

o Given two signatures we can calculate the private key - oops!

SONY v FAILOVER

CRYPTO CHALLENGE

OTHER ATTACKS
o  Cut and paste code from the Interwebs

o  Brute force passphrase / password for SSH private key

o  Brute force weak password so no need to crack hash

o  Compromise CA to create fradulent certificates (COMODO)

o  Malware sniffs VPN keys from memory

o  Malware modifies crypto algorithm in memory to weaken keys

OPINION:

o  RSA network and SecureID source code compromised

o  Security of SecureID resides not in the code but in the
random seeds for the tokens and server

o  Attackers may have gained seeds or know how to generate
o  seeds for clients of SecureID

o  Security is now only the password / PIN

FACT:
We have some clients that are going to be
reissued SecureID tokens..

RSA SECUREID

CONCLUSIONS
The security of a system should reside only in the key

o  Do not do DISCO

o  Protect your keys

o  Hash with SHA

o  Encrypt with AES

o  Randomness is key

o  Developers should be trained

RESOURCES

o  Practical Cryptography, Bruce Schneier
http://www.schneier.com/book-practical.html

o  Applied Cryptography, Bruce Schneier
http://www.schneier.com/book-applied.html

o  Debian OpenSSL Tools
http://digitaloffense.net/tools/debian-openssl/

o  Console Hacking 2010, fail0verflow, 27th Chaos Communication
Congress

o  Dynamic Cryptographic Trapdoors, Eric Filiol,
ESIEA Laval CVO Lab & French DoD, CanSecWest 2011

QUESTIONS?

