
unrubby
@rich0H

richö
‣ rich-oh!
‣ Computer Jerk at Stripe
‣ Duck Enthusiast
‣ Co-owner of plausibly the world's most ridiculous CVE
‣WrongIslandCon jerk
‣ paraTROOPER

‣ github.com/richo
‣ twitter.com/rich0H

http://github.com/richo
http://twitter.com/rich0H

Please hold while
richo takes a selfie

What this talk is
‣ Neat tricks with bytecode vms
‣ Some hilarity inside of the Rubby's VM
‣ Some reversing fu for people who don't like

reversing

‣Maybe a little opaque- please ask me questions

What this talk isn't
‣ Dropping 0day or bugs per se

The Problem
‣ Someone wants to give you a black box that does

computer

‣ They don't want you to know how it computers

Some terminology
‣ VM: Virtual machine
‣ Opcode/Instruction: Used interchangably to

refer to operations in the VM
‣ Bytecode: Internal representation of programs

expressed as a series of opcodes

Their Solution
‣ Obfuscation!

Their Solution
‣ Obfuscation!

‣ Not novel:
‣ Malware authors are on this case

‣ Native code has been doing this for years

‣ Obfuscating bytecode isn't new

This kinda sucks in a bytecode VM
‣ Your options for detecting fuckery are pretty

limited
‣ No performance counters

‣ Very limited sidechannels

‣ No weird instructions to poke

This *really* sucks in a dynamic VM
‣ Dynamic dispatch means you can't mangle

classes and methods
‣ Lack of a JIT means you can't do anything

egregious to method bodies

Code obfuscation
‣ Typically packs up either source or a build product
‣ Loaders tend to be really complex

‣Messing with RE's is seemingly fun to these people

Some more terminology
‣ Rubby: An interpreted, dynamic language
‣ YARV: Yet Another Rubby VM
‣MRI: Matz Rubby Interpreter

What if you're really lazy

The Rubby VM

source_file.rb READ CODEGEN

The Rubby VM

The Rubby VM

inside an InstructionSequence

The Rubby VM

source_file.rb READ CODEGEN

EVAL

The Obfuscated Rubby VM

source_file.rb READ CODEGEN

OBFUSCATIONobfuscated_source_file.rb

obfuscated_source_file.rb UNPACK EVAL

Packed code

Dynamic VM is Dynamic
‣We can trivially insert instrumentation
‣ This.. sort of works.
‣ Tack binding.pry calls everywhere

‣ Attach a debugger, do a lot of `call rb_f_eval`

‣ Defeats for this are fairly plausible and costly to
bypass
‣ Dynamism is a double edged sword

Rubby
‣ Open Source!
‣We can just slam our own debug interfaces in

‣Worked entirely with the reference
implementation
‣ All mainstream loaders target it anyway
‣ Typically see a loader for each of the more recent

rubbies

The Rubby VM
‣ Interesting symbols to start with:
‣ rb_eval_iseq

The Rubby VM
‣ Interesting symbols to start with:
‣ rb_eval_iseq

‣ rb_define_method
‣ vm_define_method

The Rubby VM
‣ Interesting symbols to start with:
‣ rb_eval_iseq

‣ rb_define_method
‣ vm_define_method

‣ rb_f_eval (lol)

Ok so we have bytecode right
‣ Now what?

A stack of Rubbies
‣ Rubby's VM is a stack machine
‣ Opcodes consume operands from the stack and

leave values on it
‣ A few simple registers for storing branch

conditions, pc, etc

Deeper into the YARV

Expressive IR is nice
‣ YARV bytecode is pretty easy to read
‣ Auditing by hand isn't too bad

‣ Happily it's also sufficiently expressive that
decompilation is pretty tenable

Reversal
‣ Research project from Michael Edgar @

dartmouth
‣ Similar in operation to pyRETic by Rich Smith

Reversal
‣ Over the course of this research I found several

versions of rubby that simply won't compile
‣ Several debug flags that cause rubby simply not

to build
‣ The VM has gained more instructions since 2010

Aside: instructions
‣ bitblt:

Aside: Docs
‣ Rubby is an english language (now)

‣ This is.. not super true for large chunks of the
codebase

Reviving Reversal
‣ Patched reversal until it started working again
‣ Added support for rubby 1.9.3
‣ And it's delightful new instructions

Presenting: unrubby
‣ Hacked up rubby VM
‣ Lots and lots of hooks into internal behaviour
‣ Reaches out to reversal for decompilation
‣ Gives you back source!

Why not just reversal
‣ Reversal's mode of operation is a bit fragile

‣ Unrubby hooks the behaviour of the VM, not the
format of the bytecode

‣ Attempts to defeat unrubby would in turn be
fragile

Digging further in
‣ Reversal suggests it can take the whole program

and turn it back into source.
‣ This is largely untrue in my experience.

Obfuscation at many layers
‣ Problem space includes two layers:
‣ Obfuscation of the bytecode itself

‣ Difficult to read bytecode

Obfuscation at many layers

Obfuscation at many layers

Digging further in
‣We can keep abusing the runtime behaviour of the VM

‣ hook more stuff!
‣ rb_mod_include

‣ rb_obj_extend

‣ rb_define_class

‣ rb_define_method

Patchy patchy

Patchy patchy

Bonus
‣ This also gives us a more flexible intermediate

state

‣Write your own hooks in rubby!

More bonus
‣ This has the impact of "unfurling"

metaprogramming
‣We get dynamically generated methods as well

Aside: Classes
‣ Rubby classes are weird
‣ If you think that hooking rb_define_class is

enough you would be sadly mistaken

‣ Luckily our hook function is idempotent

‣ Skim class.c and hook *everything*

Demo time!

Making it go
‣ Rubby's insanity is super useful to us

‣We can preload our library, then hijack execution
flow during the eval step

‣ An atexit(3) hook will just dump the code to
stdout

Real world breaking
‣ Things have dependencies
‣ Things want to talk to databases

‣ Rubby to the rescue again!

Naively
‣ Reimplement rails without any bodies

Rubby: richo has feels
‣ Rubby lets you do a bunch of things it ought not to:
‣ method_missing

‣ const_missing

‣ reopening classes

‣ monkey patching

‣ etc

Or!

Stealth
‣ Reversing things is kinda noisy
‣ Do this in an unroutable vm
‣ Unroutable vm's are miserable to work with

Stealth
‣ Reversing things is kinda noisy
‣ Do this in an unroutable vm
‣ Unroutable vm's are misrable to work with

‣ Compromises end up getting made

What's in the box?
‣ Rubby source tree
‣ Patched version of reversal
‣ A rails shim that ought to appease many

applications

‣ Please play with it!
‣ Please report bugs!

‣ I'll drop some tips in the readme for how to report
bugs without coughing up privileged code

‣ UNRUBBY_REPORT_BUG

More goodies
‣ Lots of environment variables to control what

gets emitted
‣ UNRUBBY_FULL_ISEQ

‣ UNRUBBY_METHODS

‣ YOLO

‣ Abusing the autoloader can yield results

Care and Feeding
‣ unrubby currently targets rubby 2.1
‣ Vendors typically ship shims for their rubby
‣ Upstream vendors make loader bundles available

‣ Autoloaded packages can make you sad
‣ Implement your own entrypoint

‣ Overwrite their bundled rubby

How would I defeat it?
‣ No super obvious way
‣ Unfortunately Rubby is just a really obtuse VM to

target
‣ Cat and mouse games abound:
‣ Checksum argv[0]

‣ Recalculate internal offsets

‣ Best I came up with was to shove everything into
.rodata and statically link a binary

Go forth!
‣ No obvious way to defeat the attack!
‣ Cost of attack:defense way in favour of attacker

‣ Novel technique that can be applied to other VMs
easily

‣ Go reverse stuff

Gr33tz and shit
‣ Rich Smith - pyRETic
‣Michael Edgar - Reversal

‣ TROOPERS for having me

‣Whoever I'm missing

Resources
‣ https://github.com/richo/unrubby
‣ https://github.com/michaeledgar/reversal

‣ I'll toot the link to these slides - @rich0H

Questions?

