unrubby

@richOH

richo

» rich-oh!

» Computer Jerk at Stripe

» Duck Enthusiast

» Co-owner of plausibly the world's most ridiculous CVE

» WronglslandCon jerk
» paral ROOPER

» github.com/richo
» twitter.com/richOH

http://github.com/richo
http://twitter.com/rich0H

Please hold while
richo takes a selfie

What this talk is

» Neat tricks with bytecode vms
» Some hilarity inside of the Rubby's VM

» Some reversing fu for people who don't like
reversing

» Mlaybe a little opaque- please ask me questions

What this talk isn't

» Dropping Oday or bugs per se

The Problem

» Someone wants to give you a black box that does
computer

» They don't want you to know how it computers

Some terminology

» VM Virtual machine

» Opcode/Instruction: Used interchangably to
refer to operations in the VI

» Bytecode: Internal representation of programs
expressed as a series of opcodes

Their Solution

» Obfuscation!

Their Solution

» Obfuscation!

» Not novel:
p Malware authors are on this case
p Native code has been doing this for years
p Obfuscating bytecode isn't new

This kinda sucks in a bytecode VIVI

» Your options for detecting fuckery are pretty
limited
p No performance counters
p Very limited sidechannels
p No weird instructions to poke

This *really” sucks in a dynamic VM|

» Dynamic dispatch means you can't mangle
classes and methods

» Lack of a JIT means you can't do anything
egregious to method bodies

Code obfuscation

» Typically packs up either source or a build product
» Loaders tend to be really complex

¥ Procedure

1473 basic blocks
int funcl() Edit

Calling Convention: File default (stdcall) u

» Messing with RE's is seemingly fun to these people

Some more terminology

» Rubby: An interpreted, dynamic language
» YARV: Yet Another Rubby VM

» MIRIl: Matz Rubby Interpreter

What if you're really lazy

The Rubby VIVI

|| ||
source_filerb ~® e o jo o o § READ o o oo E> CODEGEN
| | | i

The Rubby VIVI

elektra % ruby decode.rb test.rb

llodule InstanceMethods
def do_a thing(a)
puts “I'm doing a thing: #{a}"
end
end

module ClassMethods
def operation(*args)

puts “Doing an operation on #{self} with #{args.inspect}"

end
end

class SuperSekrit
include InstanceMethods
extend ClassMethods

operation :hi, :there
def butts(a)
do a thing(a)

end
end

SuperSekrit.new.butts("“richo")

co P

== disasm: <RubyVM::InstructionSequence:<compiled>@<compiled>>

0000
0002
0004
0005
0009
0010
0012
0014
0015
0019
0020
0022
0024
0025
0029
0030
0032
0035
0037
0039
0041
0043
0045

trace 1

putspecialobject 3

putnil

defineclass : InstanceMethods, <module:InstanceMethods>, 2
pop

trace 1

putspecialobject 3

putnil

defineclass :ClassMethods, <module:ClassMethods>, 2
pop

trace 1

putspecialobject 3

putnil

defineclass :SuperSekrit, <class:SuperSekrit>, 0
pop

trace 1

getinlinecache 39, <ic:0>

getconstant :SuperSekrit

setinlinecache <ic:0>

opt send simple <callinfo!mid:new, argc:0, ARGS SKIP>
putstring "richo"

opt send simple <callinfo!mid:butts, argc:1l, ARGS SKIP>

leave

1)

7)

13)

pLy

The Rubby VIVi

[:defineclass,

: InstanceMethods,
fodule InstanceMethods ["YARVInstructionSequence/SimpleDataFormat"”,
def do_a thing(a) 2
puts "I'm doing a thing: #{a}' 0’
end ’
end 1,
e ClassMethod {:arg_size=>0, :local_size=>1, :stack max=>4},
moaultie assMetnodas " . "
e e e (ares) "<modu¥e.InftanceMethods> ,
puts "Doing an operation on #{self} with #{args.inspect}" <compiled>",
end nil,
end 1,
class SuperSekrit o o ’ :class,
include InstanceMethods [1,
extend ClassMethods 0,
operation :hi, :there H'
’
def butts(a) [:trace, 2],
do a thing(a) 2
end ,
—F [:trace, 1],
[:putspecialobject, 1],
SuperSekrit.new.butts(“richo") [:putspecialobject, 2],
[:putobject, :do a thing],
[:putiseq,

["YARVInstructionSequence/SimpleDataFormat"”,

Inside an InstructionSequence

/* WDl: compatibility issue */
/*
* [:maglc, :major version, :minor version, :format type, :misc,
* :name, :path, :absolute path, :start Lineno, :type, :locals, :args,
* :catch table, :bytecode]
=

The Rubby VIVI

IS o | me »
2
3 3
/|

The Obfuscated Rubby VIV

source_filerb o o ‘ o oo > READ o o o o ,’ > CODEGEN

;

R : R v___m___“mmm”;
| obfuscated source file.rb +{" OBFUSCATION ’

. i elavo i alh _ . - S & - SN, - b P ___ SN i - PP - . - _ PR . e

PorS—.

. EVAL |

Packed code

require 'loader.so’

Loader. loadlf ' bWOkdwWx1IEluc3RhbmN1TWVOaG9kcwogIGR1ZiBkb19hX3RoaWsn
KGEpCiAgICBwdXRzICJ20g9ZG9pbmcgYSBOaGluZzogI3thfSIKICBLbmQKZWS5kCgp
tb2R1bGUgQ2xhc3NNZXRob2RzCiAgZGVmIGOwWZXIhdGlvbigqYXIncykKICAgIHB1
dHMgIkRvaWsnIGFuIGOwZXJhdGlvbiBvbiAje3NLbGZ9IHdpdGggIl3thecmdzLmluc
3BLlY3R9IgogIGVuZAp LbmQKCmNSYXNzIFN1cGVyU2VrcmlOC1iAgaW5jbHVkZSBIbn
NOYW53jZU11ldGhvZHMKICBLleHRLbmQgQ2xhc3NNZXRob2RzCgogIGOwZXIhdGLlvbiA
6aGksIDpOaGVyZQoKICBkZWYgYnVOdHMOYSKKICAgQIGRVX2FTfdGhpbmcoYSKKICBL
bmQKZW5kCgpTdXBlc1N1la3JpdC5uZXcuYnVOdHMoInIpY2hvIikK' |}

Dynamic VM is Dynamic

» \We can trivially insert instrumentation

» This.. sort of works.

p Tack binding.pry calls everywhere
p Attach a debugger, do a lot of callrb_f_eval

» Defeats for this are fairly plausible and costly to
bypass

» Dynamism is a double edged sword

2{8]s]s)Y;

» Open Source!

» \We can just slam our own debug interfaces in

» Worked entirely with the reference
iImplementation

» All mainstream loaders target it anyway

p Typically see a loader for each of the more recent
rubbies

The Rubbv VIV

» Interesting symbols to start with:
p rb_eval_iseq

VALUE
rb iseq eval(VALUE iseqval)
{
VALUE reversal;
it (reversal = get reversal()) {
it (getenv("UNRUBBY FULL ISEQ")) {
VALUE bytecode = rb funcall(iseqval, rb intern(“"disasm"), 0);
rb_funcall(rb_stdout, rb _intern("puts"), 1, bytecode);

}
}

The Rubbv VIV

» Interesting symbols to start with:

p rb_eval_iseq
p rb_define_method

P vm_define_method

The Rubbv VIV

» Interesting symbols to start with:

p rb_eval_iseq
p rb_define_method

P vm_define_method

» rb_f_eval (lol)

Ok so we have bytecode right

» Now what?

A stack of Rubbies

» Rubby's VM Is a stack machine

» Opcodes consume operands from the stack and
leave values on it

» A few simple registers for storing branch
conditions, pc, etc

Deeper into the YARV

pp RubyVM::InstructionSequence.new(" “).to a

[1,

[:trace, 1],

[:getinlinecache, :label 9, 8],
[:getconstant, :Math],

[:setinlinecache, 0],

: Label 9,
:putobject, 49],
:opt send simple, {:mid=>:sqrt, :flag=>256, :orig argc=>1, :blockptr=>nil}],
:dup],
:setinstancevariable, :@a, 1],
: leave]]]

guu—y Wy ey ey

Expressive IR Is nice

» YARV bytecode is pretty easy to read
» Auditing by hand isn't too bad

» Happily it's also sufficiently expressive that
decompilation is pretty tenable

Reversal

» Research project from Michael Edgar @
dartmouth

» Similar in operation to pyRETIc by Rich Smith

Reversal

» Over the course of this research | found several
versions of rubby that simply won't compile

» Several debug flags that cause rubby simply not
to build

» The VM has gained more instructions since 2010

Aside: instructions

» bitblt:

/**

@c joke
@ BLT
@ BLT
-
DEFINE INSN
bitblt

()

()
(VALUE ret)

{
}

ret = rb_str new2("a bit of bacon, lettuce and tomato");

Aside: Docs

» Rubby is an english language (now)

» This is.. not super true for large chunks of the

codebase

expandarra
/**

@c put

@ expand array to num objects.

@Q R9Yv VI by T7DAFATIxV FHEBINTHENE., ThZERBRAT B,
BAATIz FOERED numBATRSE, fRDVIC nil ZR/T ., numbA LB 5 |
numbA EOERETDVETS.

BAATIV FTREINIE, num - 1 BD nil ZFR/E.
HU flag REBS5, RUEBEBROEIZERD

flag: 0x01 - RRZHEIIIC

flag: 0x02 - postarg

flag: 0xB4 - reverse?

Reviving Reversal

» Patched reversal until it started working again
» Added support for rubby 1.9.3

p And it's delightful new instructions

Presenting: unrubby

» Hacked up rubby VIVI
» Lots and lots of hooks into internal behaviour

» Reaches out to reversal for decompilation
» Lives you back source!

Why not just reversal

» Reversal's mode of operation is a bit fragile

» Unrubby hooks the behaviour of the VM, not the
format of the bytecode

» Attempts to defeat unrubby would in turn be
fragile

Digging further In

» Reversal suggests it can take the whole program
and turn 1t back into source.

» This is largely untrue in my experience.

Obfuscation at many layers

» Problem space includes two layers:

p Obfuscation of the bytecode itself
p Difficult to read bytecode

Obfuscation at many layers

Creating a class with "defineclass’

== @disasm: <RubyVM::InstructionSequence:<compilled>@<complled>>==========
POOO trace 1 | 1)
0002 putspecialobject 3

0004 putnil

0005 defineclass : Foobar, <class:Foobar>, 0

0009 leave

Obfuscation at many layers

Creating a class without “defineclass’
== disasm: <RubyVM::InstructionSequence:<complled>@<complled>>==========

POOO trace 1 | 1)
POO2 getinlinecache 9, <1s:0>
POO5 getconstant :Class

POO7 setinlinecache <is:0>

POO9 opt send simple <callinfo!mid:new, argc:0, ARGS SKIP>
PO11 dup

PO12 putspecialobject 3

PO14 setconstant : Foobar

PO16 leave

Digging further in

» \We can keep abusing the runtime behaviour of the VM

» hook more stuff!
p rb_mod_include
p rb_obj_extend
p rb_define_class
p rb_define_method

Patchv patchyv

+/* If we're in rubby, and reversal is loaded, return a reference to Reversal.
+ * Otherwise return NULL

+ */

+VALUE get reversal(void) {

+ 1f (rubby) {

+ if (rb _const defined(rb cObject, rb intern("Reversal"))) {
- VALUE reversal = rb path2class("Reversal");

+ if (rb_const_defined(reversal, rb_intern("LOADED"))) {

- return reversal;

+ }

+ }

+ }

+ return NULL;

+}

Patchv patchyv

@@ -1959,6 +1968,12 @@'vm_define_method(rb_thread_t *th, VALUE obj, ID id, VALUE iseqval,
klass = rb singleton class(obj);
noex = NOEX PUBLIC;

}
I VALUE reversal;
+ if (reversal = get reversal()) {
+ if (getenv("UNRUBBY METHODS")) {
+ rb_funcall(reversal, rb_intern("decompile_into"), 2, iseqval, obj);
+ }
+ }
@@ -1455,6 +1456,14 @@ vm exec(rb thread t *th)
VALUE
rb iseq eval(VALUE iseqval)
{

VALUE reversal;
if (reversal = get reversal()) {
if (getenv("UNRUBBY FULL ISEQ")) {
VALUE reversed = rb funcall(reversal, rb intern("decompile"), 1, iseqval);
rb funcall(rb stdout, rb intern("puts"), 1, reversed);
}

}

++++++ + +

Bonus

» This also gives us a more flexible intermediate
state

» \Write voiir owwn hnnks in rithhvl
@@klassmap = Hash.new do |h, k|

hik] = {
:methods = [],
:includes => [],
extends = [],
:super = nil,

end

More bonus

» This has the impact of "unfurling”
metaprogramming

» \We get dynamically generated methods as well

Aside: Classes

» Rubby classes are weird

» If you think that hooking rb_define_class is
enough you would be sadly mistaken

» Luckily our hook function is idempotent

» Skim class.c and hook *everything*

Demo time!

Making it go

» Rubby's insanity is super useful to us

» \We can preload our library, then hijack execution
flow during the eval step

» An atexit(3) hook will just dump the code to
stdout

Real world breaking

» Things have dependencies
» Things want to talk to databases

» Rubby to the rescue again!

Naively

» Reimplement rails without any bodies

Rubby: richo has feels

» Rubby lets you do a bunch of things it ought not to:
P method_missing
p const_missing
P reopening classes
p monkey patching

p etc

Or!

[dlass Stub
def self.method missing(sym, *args)
return Stub.new
end
end

class Object
def self.const missing(const)
Stub
end
end

Stealth

» Reversing things is kinda noisy
» Do this in an unroutable vim
» Unroutable vm's are miserable to work with

Stealth

» Reversing things is kinda noisy
» Do this in an unroutable vim
» Unroutable vm's are misrable to work with

» Compromises end up getting made

What's in the box?

» Rubby source tree

» Patched version of reversal

» Arails shim that ought to appease many
applications

» Please play with it!
p Please report bugs!

p I'lldrop some tips in the readme for how to report
bugs without coughing up privileged code

p UNRUBBY_REPORT_BUG

More goodies

» Lots of environment variables to control what
gets emitted
» UNRUBBY FULL ISEQ
» UNRUBBY METHODS
» YOLO

» Abusing the autoloader can yield results

Care and Feeding

» unrubby currently targets rubby 2.1
» \Vendors typically ship shims for their rubby

p Upstream vendors make loader bundles available

» Autoloaded packages can make you sad

p Implement your own entrypoint
p Overwrite their bundled rubby

How would | defeat it?

» No super obvious way

» Unfortunately Rubby is just a really obtuse VM to
target

» Cat and mouse games abound:
p Checksum argv|0]
p Recalculate internal offsets

» Best | came up with was to shove everything into
rodata and statically link a binary

Go forth!

» No obvious way to defeat the attack!
» Cost of attack:defense way in favour of attacker

» Novel technique that can be applied to other VMs
easily

» Go reverse stuff

Gr33tz and shit

» Rich Smith - pyRETIc
» Michael Edgar - Reversal

» TROOPERS for having me

» Whoever I'm missing

Questions?

Resources

» https://github.com/richo/unrubby
» https://github.com/michaeledgar/reversal

» I'll toot the link to these slides - @r1chOH

