
www.ernw.de

Implementing an USB Host Driver Fuzzer
Daniel Mende – dmende@ernw.de

www.ernw.de

Disclaimer

¬ This is an implementation talk.

¬ We (still) haven’t finished testing.

¬ No exploits were given that day.

www.ernw.de

Agenda

¬ USB Basics

¬ Facedancer Hardware

¬ dizzy Fuzzing Toolkit

¬ dizzy USB Additions

¬ Practical USB Fuzzing

¬ Results

www.ernw.de

USB BASICS

www.ernw.de

USB History
¬ Development of the first

specification started in 1994.

¬ USB version 1.0 released in 1996

¬ USB version 1.1 released in 1998

¬ USB version 2.0 released in 2001

¬ USB version 3.0 released in 2008

www.ernw.de

USB History

¬ Developed by a group of
companies:

Compaq, DEC, IBM, Intel, Microsoft,
NEC, and Nortel

¬ Standardized by the USB
Implementers Forum (USBIF)

www.ernw.de

USB Versions

¬ Three different versions defined:
 USB 1.1 with 1.5Mb/s

 USB 2.0 with 480Mb/s

 USB 3.0 with 4Gb/s

¬ Only USB 1.1 and USB 2.0 are
addressed with this talk.

www.ernw.de

USB Descriptor
¬ Device descriptor identifies the USB

device.

¬ Followed by more descriptors:
 Configuration Descriptor
 Interface Descriptor
 Endpoint Descriptor
 String Descriptor

¬ Signals the Host which driver to use.

www.ernw.de

Device Descriptor

www.ernw.de

USB Enumeration

¬ Device descriptor is requested.

¬ Selected configuration descriptor
is requested.

¬ String descriptors referenced in
device and configuration descriptor
are requested (Manufacturer,
Product, eg.).

www.ernw.de

USB Enumeration

www.ernw.de

Well, how do matters stand with security?

www.ernw.de

USB Vulnerabilities

¬ Windows USB Descriptor
Vulnerability
 CVE-2013-1285

 CVE-2013-1286

 CVE-2013-1287

¬ Linux Kernel caiaq USB Drivers
Buffer Overflow
 CVE-2011-0712

www.ernw.de

USB Vulnerabilities
(cont.)

¬ Solaris USB configuration
descriptor kernel stack overflow
 CVE-2011-2295

¬ usbmuxd 1.0.7 Buffer Overflow
Vulnerability
 CVE-2012-0065

www.ernw.de

FACEDANCER HARDWARE

www.ernw.de

Facedancer

¬ External USB testing hardware.

¬ Allows to send raw USB PDUs.

¬ Consists of:
 FT232R USB to serial UART

(Host connect)

 MSP430F2618 16bit µc

 MAX3421E USB controller
(Target connect)

www.ernw.de

Facedancer

www.ernw.de

Facedancer

www.ernw.de

Facedancer

¬ Controlled from the host PC, using
a python library.

¬ Implements basic USB protocol
layer as well.

http://goodfet.sourceforge.net/hardw
are/facedancer21/

www.ernw.de

www.ernw.de

DIZZY FUZZING TOOLKIT

www.ernw.de

Fuzzing “Fuzzing or Fuzz Testing is a software
negative testing technique. It uses the
fault injection approach, which basically
injects wrong data into the tested
program. Fuzzing can be used to test
parser of any kind like protocol parser,
file format parser, language parser, etc.“

B. Miller, L. Fredriksen, and B. So.
An empirical study of the reliability of
unix utilities.

Definition

www.ernw.de

Dizzy
¬ Python based fuzzing toolkit.

¬ First release in 2011.

¬ Simple packet description syntax.

¬ Does state less and state full fuzzing.

http://c0decafe.de/tools/dizzy-0.8.2.tar.bz2

www.ernw.de

Dizzy packet description

¬ Defined in Python syntax.

name = "empty"

objects = []

functions = []

www.ernw.de

Dizzy packet description

¬ The object array contains the fields
of the packet.

¬ The functions array contains
operations performed on the
packet before its sent to the target.

www.ernw.de

Dizzy packet description
¬ Available objects are:

 field, list, rand, link, fill and padding.

¬ Available functions are:
 time, time_no_fracs, length,

lambda_length, csum, lambda_csum

• See dizzy README for details.

www.ernw.de

.dizz file example
name = "example"

objects = [

 field("type", 8, "\x00", "full"),

 field("length", 8, "\x06", "full"),

 field("value", None, "fuzz", "std"),

]

functions = [

 length("length", "type", "value"),

]

www.ernw.de

arp.dizz

name = "arp"

objects = [

 field("hw_type", 16, "\x00\x01", "full"),

 field("proto_type", 16, "\x08\x00", "full"),

 field("hw_size", 8, "\x06", "full"),

 field("proto_size", 8, "\x04", "full"),

 field("opcode", 16, "\x00\x01", "full"),

 field("mac_src", 48, "\x01\x02\x03\x04\x05\x06", "none"),

 field("ip_src", 32, "\xc0\xa8\x5f\xb5", "none"),

 field("mac_dst", 48, "\x00\x00\x00\x00\x00\x00", "none"),

 field("ip_dst", 32, "\xc0\xa8\x5f\xb6", "none"),

]

functions = []

www.ernw.de

more objects

objects = [

 rand("nonce", 8*16),

 list("list1", "default", "~/list1.txt"),

 field("val1", None, "fuzz", "std"),

 link("nonce_again", "nonce"),

]

www.ernw.de

padding example

field("val", 8, "\x01", "none"),

field("val2", None, "\x02", "std"),

padding("pad", "val", "val2", 8*8, "\x00"),

www.ernw.de

Interaction concept

¬ State full fuzzing is represented as
a series of packets (.dizz files).

¬ Packets are sent out in order and
an answer is read between.

¬ Parts of an answer can be
extracted and used in further
transmissions.

www.ernw.de

Dizzy interaction description

name = "testact"

objects = [

 dizz("first", "dizzes/first.dizz"),

 dizz("second", "dizzes/second.dizz"),

]

functions = []

www.ernw.de

Dizzy interaction description

name = "act1"

objects = [

 dizz("first", "dizzes/first.dizz"),

 dizz("auth", "dizzes/auth.dizz"),

 dizz("command", "dizzes/command.dizz"),

]

functions = [

 copy(2, "auth", 0x10, 0x20),

]

www.ernw.de

DIZZY USB ADDITIONS

www.ernw.de

Dizzy Output Type

¬ Two new output types:
 usb-desc for USB descriptor fuzzing.

 usb-endp for USB endpoint fuzzing.

¬ Added in dizz_session class.

dizzy.py

www.ernw.de

Dizzy – Facedancer glue

¬ Implements the USBDevice and
USBInterface classes required by
the Facedancer USB lib.

¬ dizzUSB class is used to
start/stop/control the USB thread
and descriptor payload.

usb.py

www.ernw.de

PRACTICAL USB FUZZING

www.ernw.de

USB fuzzing

¬ There are different targets on USB:
 Device Descriptor

 Configuration Descriptor

 Endpoints

www.ernw.de

USB fuzzing

¬ Descriptor fuzzing targets the host
OS USB stack.

¬ Endpoint fuzzing targets the USB
device driver (either from the OS
vendor or third party).

www.ernw.de

Were to get the
descriptors

¬ We are setting up an USB
device/configuration descriptor
collection at usbdescriptors.com.

¬ You can contribute to the collection
by submitting:
 The output of lsusb –v

 The raw descriptors

www.ernw.de

What you need

¬ Hardware:
 Host PC

 Facedancer Board

 Two USB cables

 Target PC

www.ernw.de

What you need

¬ Software:
 Python and dizzy on the host.

 USB device file.

 Dizzy packet description file.

www.ernw.de

Step I

¬ Create the USB descriptor file from
the device you want to emulate:

 lsusb -s 1:1 -v | perl parse_lsusb.pl >

DEVICENAME.usb

www.ernw.de

Step II

¬ Create / Modify your .dizz file:

 vim dizzes/usb/configuration_descriptor.dizz

www.ernw.de

Step III

¬ Attach the Facedancer board to the
host PC and to the target PC.

www.ernw.de

Step IV

¬ Start dizzy:

 dizzy.py -o usb-desc -d DEVICENAME.usb -e CD

configuration_descriptor.dizz

www.ernw.de

Step V

¬ Monitor USB traffic via wireshark.
 On Windows USBPcap is needed:

 http://desowin.org/usbpcap/

www.ernw.de

RESULTS

www.ernw.de

Results

¬ We didn’t perform wide scale
fuzzing.

¬ Still, some unexpected behavior
appeared during functional testing
of the code (;

www.ernw.de

Results

¬ Host (USB Stack) crash
 Win7 (x64), Linux 3.10 (x64)

¬ Software crashes on target:
 Skype, VMware, etc…

www.ernw.de

Results

www.ernw.de

Results

¬ We didn’t investigate those
crashes, as getting the
implementation done was the main
prio.

¬ We will investigate them in the
future, no worries (;

www.ernw.de

Conclusions
¬ In the past expensive hardware

was needed to perform USB
testing.

¬ With low cost hardware available
more people can test USB
implementations.

¬ Expect a bunch of new USB
vulnerabilities to show up.

www.ernw.de

There’s never enough time…

THANK YOU… ...for yours!

www.ernw.de

