Recent IPv6 Security Standardization Efforts

Fernando Gont

Motivation for this presentation

IPv6 Security Summit 2015 Heidelberg, Germany. March 16-17, 2015

Motivation

- TCP & IPv4 were introduced in the early '80's
- Yet in the late '90s (and later!) we were still addressing security issues
 - SYN flood attacks
 - Predictable TCP Initial Sequence Numbers (ISNs)
 - Predictable transport protocol ephemeral port numbers
 - IPv4 source routing
 - etc.
- Mitigations typically researched **after** exploitation
- Patches applied on production systems

Motivation (II)

• We hope to produce an alternative future for IPv6

IPv6 Security Summit 2015 Heidelberg, Germany. March 16-17, 2015

Part I: Protocol Issues

IPv6 Security Summit 2015 Heidelberg, Germany. March 16-17, 2015

 $\ensuremath{\mathbb{C}}$ 2014 SI6 Networks. All rights reserved

IPv6 Addressing Brief overview

IPv6 Security Summit 2015 Heidelberg, Germany. March 16-17, 2015

IPv6 Global Unicast Addresses

n	bits		m bits		128-n-m bits	I
Global R	outing Prefix	Sı	ıbnet ID		Interface ID	

- A number of possibilities for generating the Interface ID:
 - Embed the MAC address (traditional SLAAC)
 - Embed the IPv4 address (e.g. 2001:db8::192.168.1.1)
 - Low-byte (e.g. 2001:db8::1, 2001:db8::2, etc.)
 - Wordy (e.g. 2001:db8::dead:beef)
 - According to a transition/co-existence technology (6to4, etc.)
 - Random and constant (MS Windows)
 - Random and temporary (RFC 4941)

IPv6 Addressing Overview of Security Implications

SI6 NETWORKS

IPv6 Security Summit 2015 Heidelberg, Germany. March 16-17, 2015

Security Implications of IPv6 Addressing

- Correlation of network activity over time
 - 'cause the IID does not change over time
- Correlation of network activity across networks
 - 'cause the IID does not change across networks
 - e.g. 2001:db8::**1234:5678:90ab:cdef** vs. fc00:1::**1234:5678:90ab:cdef**
- Network reconnaissance
 - 'cause the IIDs are predictable
 - e.g. 2001:db8::**1**, 2001:db8::**2**, etc.
- Device specific attacks
 - 'cause the IID leaks out the NIC vendor
 - e.g. 2001:db8::**fad1:11**ff:fec0:fb33 -> Atheros

IPv6 Addressing Network Reconnaissance Myths and Reality

IPv6 Security Summit 2015 Heidelberg, Germany. March 16-17, 2015

Introduction

"Thanks to the increased IPv6 address space, IPv6 host scanning attacks are unfeasible. Scanning a /64 would take 500.000.000 years"

– Urban legend

Is the search space for a /64 really 2⁶⁴ addresses?

Short answer: No! (see: Jraft-ietfopsec-ipv6-host-scanning)

Our experiment

- Find "a considerable number of IPv6 nodes" for address analysis:
 - Alexa Top-1M sites + perl script + dig
 - World IPv6 Launch Day site + perl script + dig
- For each domain:
 - AAAA records
 - NS records -> AAAA records
 - MX records -> AAAA records
- What did we find?

IPv6 address distribution for the web

IPv6 Security Summit 2015 Heidelberg, Germany. March 16-17, 2015

IPv6 address distribution for MXs

IPv6 Security Summit 2015 Heidelberg, Germany. March 16-17, 2015

IPv6 address distribution for the DNS

IPv6 Security Summit 2015 Heidelberg, Germany. March 16-17, 2015

IPv6 Addressing Mitigation of Security Issues

IPv6 Security Summit 2015 Heidelberg, Germany. March 16-17, 2015

Temporary Addresses (RFC4941)

- RFC 4941: privacy/temporary addresses
 - Random IIDs that change over time
 - Generated **in addition** to traditional SLAAC addresses
 - Traditional addresses used for server-like communications, temporary addresses for client-like communications
- Operational problems:
 - Difficult to manage!
- Security problems:
 - They do not fully replace the traditional SLAAC addresses (hende host-tracking is **only partially mitigated**)
 - They **do not** mitigate host-scanning attacks

SLAAC stable-privacy (RFC7217)

- RFC published in April 2014
- Generate Interface IDs as:

F(Prefix, Net_Iface, Network_ID, Counter, Secret_Key)

- Where:
 - F() is a PRF (e.g., a hash function)
 - Prefix SLAAC or link-local prefix
 - Net_Iface is some interface identifier
 - Network_ID could be e.g. the SSID of a wireless network
 - Counter is used to resolve collissions
 - Secret_Key is unknown to the attacker (and randomly generated by default)

SLAAC stable-privacy (RFC7217) (II)

- As a host moves:
 - Prefix and Network_ID change from one network to another
 - But they remain constant within each network
 - F() varies across networks, but remains constant within each network
- This results in addresses that:
 - Are stable within the same subnet
 - Have different Interface-IDs when moving across networks
 - For the most part, they have "the best of both worlds"
- A Linux implementation is in the works

DHCPv6's draft-ietf-dhc-stable-privacy

• Generate Interface IDs as:

F(Prefix | Client_DUID | IAID | Counter | secret_key)

- Where:
 - F() is a PRF (e.g., a hash function)
 - Client_DUID is the Client's DHCPv6 DUID
 - Net_Iface is some interface identifier
 - Counter is employed to resolve collisions
 - Secret_Key is unknown to the attacker (and randomly generated by default)

DHCPv6's draft-ietf-dhc-stable-privacy (II)

- Allows for multiple DHCPv6 servers to operate within the same subnet
- Even if the DHCPv6 lease file gets lost/corrupted, addresses will be stable
- State about address leases is shared "algorithmically"
 - No need for a new protocol

Other IETF work in this area

- draft-ietf-6man-ipv6-address-generation-privacy
 - Discusses the security implications of IPv6 addressing
- draft-ietf-6man-default-iids
 - Notes that implementations should default to RFC7217

IPv6 Extension Headers

IPv6 Security Summit 2015 Heidelberg, Germany. March 16-17, 2015

 $\ensuremath{\mathbb{C}}$ 2014 SI6 Networks. All rights reserved

IPv6 Extension Headers Theory

IPv6 Security Summit 2015 Heidelberg, Germany. March 16-17, 2015

IPv6 Extension Headers

- Fixed-length base header
- Options conveyed in different types of Extension Headers
- Extension Headers organized as a daisy-chain structure

IPv6 Fragmentation

- Conceptually, same as in IPv4
- Implemented with an IPv6 Fragmentation Header

IPv6 Extension Headers Reality

IPv6 Security Summit 2015 Heidelberg, Germany. March 16-17, 2015

Finding Upper-layer information

• Finding upper-layer information is painful (if at all possible)

Processing the IPv6 header chain

- Processing the IPv6 header chain is expensive
 - May be CPU-intensive
 - Some implementations can inspect only up to 128 bytes (or even some smaller number)

Fragmentation deemed as 'insecure'

- DoS vector:
 - Some are afraid about stateful-ness of IPv6 fragments
- Evasion:
 - It becomes harder (if at all possible) to implement ACLs
- Buggy implementations:
 - e.g. some boxes crash when a malformed fragment traverses it

IPv6 Fragmentation and EH reliability

- Operators filter them, as a result of:
 - Perceived issues with IPv6 Fragmentation and EH
 - Almost no current dependence on them
- IPv6 Extension Headers result in unreliability

WIPv6LD dataset: Packet Drop rate

WIPv6LD dataset: Drops by diff. AS

Alexa dataset: Packet Drop rate

Alexa dataset: Drops by diff. AS

IPv6 Security Summit 2015 Heidelberg, Germany. March 16-17, 2015

So... what does this all mean?

- Good luck with getting IPv6 EHs working in the Internet!
 - They are widely dropped
- IPv6 EHs "not that cool" for evasion, either
 - Chances are that you will not even hit your target

IETF work in this area

- draft-gont-v6ops-ipv6-ehs-in-real-world
 - Measures EH support in the public Internet
 - Currently under discussion in the v6ops wg mailing-list
- draft-gont-opsec-ipv6-eh-filtering
 - Provides advice regarding the filtering of IPv6 EHs
- RFC7045
 - Clarifies the processing of IPv6 EHs
- draft-gont-6man-ipv6-opt-transmit
 - Carification regarding the processing of IPv6 options
 - Complements RFC7045

IPv6 Extension Headers Fragment Header

IPv6 Fragmentation Overview

- IPv6 fragmentation performed only by hosts (never by routers)
- Fragmentation support implemented in "Fragmentation Header"

8 bits	8 bits	13 bits	2b 1b					
Next Header	Reserved	Fragment Offset	Res M					
Identification								

- Where:
 - Fragment Offset: Position of this fragment with respect to the start of the fragmentable part
 - M: "More Fragments", as in IPv4
 - "Identification": Identifies the packet (with Src IP and Dst IP)

Fragmentation: Security Implications

- Fragmentation known to be painful for NIDS
- Fragment reassembly is a state-full mechanism
 - Potential for DoS attacks
- Predictable Fragment IDs well-known from the IPv4 world
 - idle-scanning
 - DoS attacks (fragment ID collisions)
- Situation exacerbated by larger payloads resulting from:
 - Larger addresses
 - DNSSEC
- But no worries, since we learned the lesson from the IPv4 world... – right?

Fragment ID generation policies

Operating System	Algorithm
FreeBSD 9.0	Randomized
NetBSD 5.1	Randomized
OpenBSD-current	Randomized (based on SKIPJACK)
Cisco IOS 15.3	Predictable (GC init. to 0, incr. by +1)
Linux-current	Unpredictable (PDC init. to random value)
Solaris 10	Predictable (PDC, init. to 0)
Windows 7 Home Prem.	Predictable (GC, init. to 0, incr. by +2)

GC: Global Counter PDC: Per-Destination Counter

At least Solaris and Linux patched in response to our IETF I-D – more patches expected!

Assessing the Frag. ID policy

- The Fragment ID generation policy can be assessed with:
 - # frag6 -v --frag-id-policy -d fc00:1::1

Idle scan: Introduction

- Stealth port scanning technique
- Allows port scanning without the attacker sending any packets to the target with its real Source Address.
- The attacker only needs a host that employs predictable Identification values.

Idle scan: TCP 3WHS review

• Normal TCP 3WHS

Idle scan: TCP 3WHS review

• TCP 3WHS with spoofed segments

Open Port

Closed Port

IPv6 Security Summit 2015 Heidelberg, Germany. March 16-17, 2015

Idle scan implementation

Open Port

Closed Port

IPv6 Security Summit 2015 Heidelberg, Germany. March 16-17, 2015

Mitigating predictable Frag. IDs

- Goal: Make the Fragment Identification unpredictable
- Border conditions:
 - Identification value is 32-bit long, but...
 - Translators only employ the low-order 16 bit
 - A Frag ID should not be reused too frequently
- Possible schemes
 - Simple randomization
 - More "elaborate" randomization schemes
 - Hash-based
- Discussed in IETF I-D: draft-ietf-6man-predictable-fragment-id

IPv6 Extension Headers Attacks

IPv6 Security Summit 2015 Heidelberg, Germany. March 16-17, 2015

 $\ensuremath{\mathbb{C}}$ 2014 SI6 Networks. All rights reserved

Old/obvious/boring stuff

• e.g. RA-Guard evasion

More interesting stuff

- If IPv6 frags are widely dropped...What if we triggered their generation?
 - Send an ICMPv6 PTB with an MTU<1280
 - The node will then generate IPv6 atomic fragments

Atomic fragment

Attack Scenario #1

• Client communicates with a server

Attack Scenario #1 (II)

• Attacking client-server communications

Attack scenario #1 (II)

- Simple way to reproduce it:
 - Attack and client machine is the same one
 - So we attack our own "connections"
- Attack:
 - Test IPv6 connetivity:

telnet 2001:4f8:1:10:0:1991:8:25 80

• Send an ICMPv6 PTB < 1280 to trigger atomic fragments

sudo icmp6 --icmp6-packet-too-big -d
2001:4f8:1:10:0:1991:8:25 --peer-addr
2001:5c0:1000:a::a37 --mtu 1000 -o 80 -v

• Test IPv6 connectivity again:

telnet 2001:4f8:1:10:0:1991:8:25 80

Attack scenario #2: Lovely BGP

- Say:
 - We have two BGP peers
 - They drop IPv6 fragments "for security reasons"
 - But they do process ICMPv6 PTBs
- Attack:
 - Fire an ICMPv6 PTB <1280 (probably one in each direction)
- Outcome:
 - Packets get dropped (despite TCP MD5, IPsec, etc.)
 - Denial of Service

Mitigating these issues

- draft-gont-6man-deprecate-atomfrag-generation
- Essentially,
 - "Do not send IPv6 atomic fragments in response to ICMPv6 PTB < 1280"
 - Update SIIT (IPv6/IPv4 translation) such that it does not rely on them
- Already adopted by the Linux kernel!

IPv6 Neighbor Discovery Validation of Neighbor Discovery Options

IPv6 Security Summit 2015 Heidelberg, Germany. March 16-17, 2015

Validation of Neighbor Discovery Options

- Most stacks do little to no validation of ND options
- Specially crafted options may result in security implications
- Example: SLLLA/TLLA mapping to broadcast or multicast MAC addresses can be employed for:
 - DoS attacks
 - Sniffing in a switched network
- draft-ietf-6man-nd-opt-validation:
 - Recommends sanity checks for ND options

IPv6 Standardizaton Efforts Part I: Operational Issues

IPv6 Security Summit 2015 Heidelberg, Germany. March 16-17, 2015

IPv6 First Hop Security

IPv6 Security Summit 2015 Heidelberg, Germany. March 16-17, 2015

 $\ensuremath{\mathbb{C}}$ 2014 SI6 Networks. All rights reserved

DHCPv6-Guard

- DHCPv6 version of RA-Guard :-)
- Specified in: draft-ietf-opsec-dhcpv6-shield

IPv6 firewalling

IPv6 Security Summit 2015 Heidelberg, Germany. March 16-17, 2015

 $\ensuremath{\mathbb{C}}$ 2014 SI6 Networks. All rights reserved

So... what is a firewall

- Different vendors & people have different expectations
- That becomes evident when trying to purchase one
- draft-gont-opsec-ipv6-firewall-reqs
 - Our attempt to specify a set of desired features
 - Still drafty, but got a lot of feedback!

VPN Leakages

IPv6 Security Summit 2015 Heidelberg, Germany. March 16-17, 2015

 $\ensuremath{\mathbb{C}}$ 2014 SI6 Networks. All rights reserved

VPN leakages

- Typical scenario:
 - You connect to an insecure network
 - You establish a VPN with your home/office
 - Your VPN software does not support IPv6
- Trivial to trigger a VPN leakage
 - Spoof RA's or DHCPv6-server packets, to set the recursive DNS server
 - Simply trigger IPv6 connectivity, such that dual-stacked hosts leak out
 - Even legitimate dual-stacked networks may trigger it
- Issue described in RFC7359

Some conclusions

IPv6 Security Summit 2015 Heidelberg, Germany. March 16-17, 2015

 $\ensuremath{\mathbb{C}}$ 2014 SI6 Networks. All rights reserved

Some conclusions

- Many IPv4 vulnerabilities have been re-implemented in IPv6
 - We just didn't learn the lesson from IPv4, or,
 - Different people worked in IPv6 than in IPv4, or,
 - The specs could make implementation more straightforward, or,
 - All of the above? :-)
- Still lots of work to be done in IPv6 security
 - We all know that there is room for improvements
 - We need IPv6, and should work to improve it

Questions?

IPv6 Security Summit 2015 Heidelberg, Germany. March 16-17, 2015

 $\ensuremath{\mathbb{C}}$ 2014 SI6 Networks. All rights reserved

Thanks!

Fernando Gont

fgont@si6networks.com

IPv6 Hackers mailing-list

http://www.si6networks.com/community/

www.si6networks.com

