
Author(s): Ömer Coşkun & Mark de Groot

iOS Hacking: Advanced Pentest & Forensic
Techniques

The supreme art of war is to subdue the enemy without fighting. Sun Tzu

$ whoami

 Ömer Coşkun
¡  BEng. Computer Science

 Research Assistant in
Quantum Cryptography
& Advanced Topics in AI

2

¡ Industry Experience

KPN – CISO , Ethical
Hacking

Verizon – Threat &
Vulnerability Management

IBM ISS – Threat Intelligence

¡  Interests

Algorithm Design, Programming, Cryptography,
Reverse Engineering, Malware Analysis, OS
Internals, Rootkits

 Mark de Groot
¡  Industry Experience

KPN – CISO , Ethical Hacking

¡  Interests

Programming, Cryptography,
Reverse Engineering,
Software Explotation, CTF,
Rfid, SDR

Outline

¡  Overview

¡  Motivation

¡  iOS Security Architecture

¡  Application Sandbox and SandBox Profiles

¡  File System Encryption

¡  iOS Application Reverse Engineering

¡  iOS 64 bit App Static/Dynamic Analysis

¡  Hunting for RSA Keys

¡  iOS Application Penetration Testing

¡  Application Communication Interception

¡  Atomizing Pentesting

¡  Q/A

¡  Questions ?

3

Motivations 4
¡ Analyze existing security mechanism on iOS platform

and circumvention techniques

¡ Automate and speed up mobile penetration tests

¡  Surveillance implants shifted focus to mobile devices

¡ Mobile applications are evolving and tied to
monetary: iOS Mobile Payments, Paypal SDK etc.

¡  iOS Rootkits are not only a theory anymore

¡  Reverse Engineering on ARM Environment is Fun!

iOS Security Architecture 5

¡  Every app on iOS requires signing information

¡  Signature information within LC_CODE_SIGNATURE

¡  SHA1 signature verification (memory pages)

¡  iOS System Security

¡  Secure BootChain : components signed by Apple

¡  System software authorization: Firmware
downgrade protection

¡  Secure Enclave: Apple A7 processors memory
encryption

¡  TouchID: PassCode Replacement

¡  KeyBags: Used for system,backup, iCloud Backups

iOS Security Architecture 6

http://www.cl.cam.ac.uk/techreports/UCAM-CL-TR-818.pdf

How does iOS SandBox Work? 7

Source: http://dl.packetstormsecurity.net/papers/general/apple-
sandbox.pdf

How does iOS SandBox Work? 8
1

• Process makes sys call with MAC callout

2
• MAC layer checks any policy apply to this process

3
•  If a policy applicable, list of policy modules invoked

4
•  If sandbox.kext registered, then callback invoke

5
• Sandbox.kext verified against matching messages

6
•  sandbox.kext either approves the request, or denies it

How does iOS SandBox Work? 9

Sample SandBox Usage:

iOS Sandbox Profiles (Documented)

kSBXProfileNoInternet

kSBXProfileNoNetwork

kSBXProfileNoWrite

kSBXProfileNoWriteExceptTemporary

kSBXProfilePureComputation

iOS Sandbox Profiles (Undocumented)

sandbox-compilerd

mDNSResponder

apsd

AppleDiags

PasteBoard

Container

MobileSafari

MobileMail

MobileMaps

File Encryption Mechanism

¡  Every file encrypted with a unique key

¡  Data Protection engine creates each time AES CBC 256-bit
key and SHA-1 hash per file

¡  File key stored within the file metadata

¡  Metadata of all files in the file system is encrypted with a
random key (iOS 1st installation)

¡  Per file key unwrapped from Class Key, then supplied to AES

engine

iOS : File System Encryption 10

iOS : File System Encryption (cont’d) 11
File API Class

NsFileProtectionNone

NsFileProtectionComplete

NsFileProtectionComplete
UnlessOpen

NsFileProtectionComplete
UntilFirstUserAuthentication

Security Attributes

kSecAttrAccessibleWhenUnlocked

kSecAttrAccessibleAfterFirstUnlock

kSecAttrAccessibleAlways

kSecAttrAccessibleWhenUnlocked
ThisDeviceOnly

kSecAttrAccessibleAfterFirstUnlock
ThisDeviceOnly

kSecAttrAccessibleAlwaysThisDevi
ceOnly File Protector with NSData:

File Protector with NSFileManager:

iOS : File System Encryption (cont’d)

Escrow KeyBag Location

/private/var/db/lockdown/

iTunes Backup Location

~/Library/Application\ Support/MobileSync/Backup/

¡  Passcode can be brute-forced

¡  Open Source and Commercial Backup Decryptors

12

iOS : Macoff File Structure 13

struct segment_command_64
{ uint32_t cmd; uint32_t cmdsize;
char segname[16]; uint64_t
vmaddr; uint64_t vmsize;
uint64_t fileoff; uint64_t filesize;
vm_prot_t maxprot; vm_prot_t
initprot; uint32_t nsects; uint32_t
flags; };

https://developer.apple.com/library/mac/documentation/
DeveloperTools/Conceptual/MachORuntime/index.html

pentestBox:/private/var/mobile/Applications/2587B469-0147-4793-86CE-
B41A1C4468DC/banking.app root# otool -l BankingApp| grep crypt

cryptoff 16384

cryptsize 835584

cryptid 1

Decrypting Binaries (32-bit) 14

 cryptoff 16384 -> 0x4000

 cryptsize 835584 -> 0xCC000

 0x4000 (vm address) + 0x4000 (crypt off) = 0x8000

 0x4000 (vm address) + 0x4000 (crypt off) + 0xCC000 (crypt size) = 0xD4000

 (gdb) dump memory dump.bin 0x8000 0xD4000 <-- Encrypted binary section

pentestBox:/private/var/mobile/Applications/2587B469-0147-4793-86CE-
B41A1C4468DC/banking.app root# otool -l BankingApp| grep crypt

cryptoff 16384

cryptsize 835584

cryptid 1

Decrypting Binaries (64-bit) 15

 cryptoff 16384 -> 0x4000

 cryptsize 835584 -> 0xCC000

 0x4000 (vm address) + 0x4000 (crypt off) = 0x8000

 0x4000 (vm address) + 0x4000 (crypt off) + 0xCC000 (crypt size) = 0xD4000

 (lldb) memory read --outfile /tmp/dump.bin –binary 0x8000 0xD4000 <--
Encrypted binary section

Remote debugging : Running debugserver on iOS – running LLDB on Mac

Getting the Debugger running 16
 All you need are stored under the Xcode IDE directories

 Obtain the debug server binary

$ hdiutil attach /Applications/Xcode.app/Contents/Developer/Platforms/
iPhoneOS.platform/DeviceSupport/7.1/DeveloperDiskImage.dmg

Create an entity file for debugserver binary signing with following
content

Getting the Debugger running 17

Sign your debugserver binary

and upload it to jailbroken iOS pentest device

Attach target binary for remote debugging

Getting the Debugger running 18

Make sure correct SDK path selected and connect to device:

Stopped thread list available if debuggger connect is made correctly

Debugging x64 iOS App 19

Reversing iOS should be easy in an ideal world :
Malware reversers would know what I mean :)

Reversing iOS Apps 20

IDA Pro correctly resolves the function names as well as
the cross references.

Reversing iOS Apps: Sainte Ida de
Louvain 21

Source: https://www.hex-rays.com/products/ida/

Check for interesting function calls as all the imports are
correctly resolved.

Reversing iOS Apps: Dealing with
Crpyto 22

It seems the application evaluates the certificate here.

Reversing iOS Apps: Dealing with
Crypto 23

https://developer.apple.com/
library/mac/documentation/
Security/Reference/
certifkeytrustservices/
index.html

Check the function prototypes and the definition on Apple Dev.

Data content is being encrypted using public key
before sending it to server.

Reversing iOS Apps: Dealing with
Crypto 24

Calling Convention : C++

ObjectPointer->Function(parameters)

Calling Convention : Objective C

[ObjectPointer Function:parameters]

Reversing iOS Apps: Hunting for
Public Key 25 The following function evaluates the certificate .

Check the function prototypes and the definition on Apple Dev.

https://developer.apple.com/
library/mac/documentation/
Security/Reference/
certifkeytrustservices/
index.html

26 Cross-references definitely help.

So do the constants and the debug strings. J

Reversing iOS Apps: Hunting for
Public Key

27 Preparation for file encryption is literally being done
here.

Reversing iOS Apps: Hunting for
Public Key

Reversing iOS Apps: Hunting for
Public Key 28

Short cheat sheet on LLDB for GDB
junkies.

LLDB Command

(lldb) memory read --outfile /tmp/
mem.bin --binary 0x1000 0x2000

(lldb) disassemble --frame
(lldb) di -f

(lldb) disassemble --start-address
0x1eb8 --count 20

(lldb) image list

GDB Command

(gdb) dump memory /tmp/mem.bin
0x1000 0x2000

(gdb) disassemble

(gdb) x/20i 0x1eb8

(gdb) info shared

Reversing iOS Apps: Hunting for
Public Key 29 Preparation for file encryption is literally being done

here.

30 I hope it’s clear to everyone what’s happening here
and the purpose of the function. J

Reversing iOS Apps: Hunting for
Public Key

How to Reversing on iOS Env? 31
1

• Observe application by running on the jailbroken device

2
• Remove encryption and obtain the flat binary

3
• Determine what needs to taken out (e.g. intellectual

property, keys, etc)

4
• Perform a static analyze in your favorite tool (IDA, Hopper)

5
• Combine static and dynamic analysis results

6
•  Hack the binary in debugger with help from analysis

results

Reversing iOS Apps: Hunting for
Public Key 32 Set breakpoint to target function and then run until

private keys are pushed into memory.

Dump the memory to a writable location by LLDB debugger .

Memory dump should contain the data we were looking for.

iOS Apps Penetration Testing 33

https://www.owasp.org/index.php/
OWASP_Mobile_Security_Project#tab=Top_10_Mobile_Risks

iOS Apps Penetration Testing 34

https://www.owasp.org/index.php/
IOS_Application_Security_Testing_Cheat_Sheet

iOS Apps Penetration Testing:
Network Traffic Analysis 35

https://www.wireshark.org/

iOS Apps Penetration Testing:
Network Traffic Analysis 36

Cacoa Packet
Analyzer:

www.tastycoco
abytes.com/
cpa/

Appeals to MAC funs; unlike WireShark, it doesn’t require
additional libraries such as XQuartz to be installed.

SSL Interception: Function Hooks 37
Standard SSLRead function provided by iOS SDK .

iOS Dev Center:

https://
developer.appl
e.com/library/
mac/
documentation
/Security/
Reference/
secureTransport
Ref/

SSL Interception: Function Hooks 38
Standard SSLWrite function provided by iOS SDK .

iOS Dev Center:

https://
developer.appl
e.com/library/
mac/
documentation
/Security/
Reference/
secureTransport
Ref/

SSL Interception: Function Hooks 39
How does a simple implementation of a function hook
implementation on iOS envrionment looks like ?

 MSHookFunction ((void *) SSLWrite, (void *) _
hook_SSLWrite, (void **) & call_to_REAL_SSLWrite);

MSHookFunction ((void *) SSLRead, (void *) _
hook_SSLRead, (void **) & call_to_REAL_SSLRead);

SSL Interception: Function Hooks 40
Create a hook that will intercept the SSL communication by
hooking application level read/write operation functions .

Hardware/Software
Interception: Captain
Hook Style Hacking 41

Captain Hook Style Hacking: Intercepts
every function, keeps a copy of the content for
herself, and then let the function continue as it
was supposed to …

SSL Interception: Function Hooks 42

SSL Interception: Function Hooks 43 What if some people implements hook functions not only to
see SSL traffic , but rather to reach hardware resources?

This is beyond the
conspiracy theories: for
real!

44

Iphone Rootkit CookBook 45
A The following code detects the audio stream.

Source Code:Tripware:

http://www.tripwire.com/state-of-security/vulnerability-management/
creating-iphone-rootkits-and-like-the-nsas-dropout-jeep/

Iphone Rootkit CookBook (cont’d) 46
A Sample hook for enabling iPhone Microphone.

Source Code:Tripware:

http://www.tripwire.com/state-of-security/vulnerability-management/
creating-iphone-rootkits-and-like-the-nsas-dropout-jeep/

Burp Suite: Atomize Everything 47

Burp Suite: http://portswigger.net/burp/

More than standard application communication interception.

Burp Extensions: Installation

u Suggested and Most Preferred Way : Burp Suite >Extensions >
BAppStore

u Some Extensions require Pro version (not because they
discriminate poor but due to API/functional limitation J)

u  Some Extensions have 3rd party dependencies or wrapper of 3rd
apllication (e.g. PhantomJS, Radamsa etc)

48

 How Extensions Work (cont’d)

Class Name Purpose

BurpExtender To write our own extension

BurpExtenderCallBacks To pass to extensions a set of
callback (register actions, mark)

ICookie To retrieve the domain for which
the cookie is in scope

IHTTPRequestResponse To retrieve and update details
about HTTP messages.

IScanIssue To retrieve details of Scanner
issues

IScanQueueItem To retrieve details of items in the
active scan queue.

IScannerInsertionPoint To define an insertion point for
use by active Scanner checks.

IntroderPayloadProcessor To obtain the name of the
payload processor

49

 Burp Extensions in a NutShell

Extension Name Purpose

.NET Beautifier Makes VIEWState info human readable

ActiveScan++ Extend passive scanning , path injection,
shellshock etc.

Blazer Generate and fuzz custom AMF messages

Bradamsa Generate intruder payload wisely J

CO2 Set of useful tools : sqlmapper, user generator,
prettier js, ascii payload processor etc.

Logger++ An extension of history feature in Burp; more
detailed and comprehensive

Session Auth Help to identify privilege escalation vulns

WebInspect Connector Newly built, share results between burp and
webinspect

50

Burp Extensions : Additional Scanner Checks

Ø Additional passive Scanner checks: Strict-Transport-
Security, X-Content-Type, X-XSS-Protection. In other
words, checks the modern browser security headers.

51

Burp Extensions : Session Auth

Ø  To Identify authentication privilege escalation
vulnerabilities.

52

Burp Extensions : CO2 53 Ø  Set of useful tools : sqlmapper, user generator, prettier js,

ascii payload processor etc.

Fully Automated XSS Verification

Ø  xssValidator extension of Burp Suite could be
leveraged to fully automate XSS verification process. 54

Fully Automated XSS Verification 55 Ø  Before starting the XSS verification process, we need
to install at least one wrapper to support extension .

Ø  Enable the payload extension after running wrapper.

Fully Automated XSS Verification 56 Ø Enable payload processing unit for xssVerifier.

Ø  Finally, create a grep-and-match rule for intruder.

Fully Automated XSS Verification 57 Ø Content of xss.js

Fully Automated XSS Verification 58 Ø Let the fun begin J

59

Questions ?

60

