- ywIROOPERS
History of the
TLS Authentication Gap Bug

Marsh Ray
Steve Dispensa
PhoneFactor

. l";ﬁ“ IT-Security Conference & Workshops :)

- Customary Protocol Stack Diagram

"‘ nuul EH&]
:‘//j“;;gs:‘.._ IT-Secu Ity Conference & Works ops

TLS Details

Exploitable MitM attack results from
authentication gap 1n renegotiation

TLS overview
Discovery, demo, details
Vulnerable code

Fixes

I ROOPERS
"/“ IT-Security Conference & Workshops
==
&

|

3
|

SSL

* The "Secure Sockets Layer"!
~* Originated with Netscape 1n 1994

» Version 1 not released publicly

SSLv2 Spec "0.2"

* First shipped version

* Spec revised a few times!

- November 29, 1994
— December 22, 1994
— January 17, 1995
— January 24, 1995
— February 9, 1995

val ROOPERS
> IT-Security Con S

[|
‘_ B ference & Workshop
A&

SSLv2 Spec "0.2"
» Basic handshake From SSL 0.2 Protocol Spec

— C -> S: client-hello challenge, cipher specs

- S -> C: server-hello conn-
id,server certificate,cipher specs

— C -> S: client-master-key
{master key}server public key

— C -> S: client-finish ~ {connection-id}client write key
- S > C: server-verify {challenge}server write key

- S -> C: server-finish {new session 1d}s write key

SSLv2 Spec "0.2"
» Uses only MD35 for PRF and record data MACs

* Client Finished message 1s just an echo of the
connection-1d from the Server Hello

— which was just sent 1n plaintext
» Server Finished message 1s the session-1d-data
— client has no way to validate it

* MitM can freely manipulate many fields in the
handshake

"‘ nuul EH&]
:‘//j“;;gs:‘.._ IT-Secu Ity Conference & Works ops

SSLv2 Spec "0.2"

» Mandatory strong server authentication

* Provides for optional

| strong client authentication

» Satisfies export regul
the key 1n the clear

ations by sending a portion of

I ROOPERS
| "/‘“ IT-Security Conference & Workshops

SSLv3
* November 1996

» Multiple versions of the spec were circulated

— Disagreements persist to this day!

* wp.netscape.com/eng/ssl3/3-SPEC.HTM

— Some 1mplementers worked from this version

— It did not allow any extension of Client Hellos

SSLv3

* This was the last spec version driven by Netscape

* One recent sample indicated that 1t may still
represent 22% of SSL/TLS handshakes!

— Even though the vast majority of clients and servers
actually support newer versions

al ROOPERS
! "/‘“ IT-Security Conference & Workshops

* wp.netscape.com/eng/ssl3/draft302.txt

— Published in IETF's Internet Draft system as draft-
freler-ssl-version3-02.txt

— Still seen at mozilla.com

— Allows for "extra data" at the end of the Client Hello
— But there was nothing that used 1t

— Nothing to implement and test with

— Specifies that this "extra data" 1s included in the hash
calculations

SSLv3
» Completely breaking change

— Client Hello message reformatted!

» Caused some servers to hang the
connection 1n a slow fail condition

* Some 1mplementations still send SSLv2+
compatible hello |

— Cipher suite 1s shortened from 3 to 2 bytes

— Record layer now defines distinct record types
for handshake, app data, alerts, etc

SSLv3

* Introduces support for Diffie-Hellman and Fortezza
(aka "clipper chip") key exchange

» Uses MD5 and SHA together in most places

* Multiple choices for record |

 Satisfies export regulations |
key generation

ayer MAC

oy using only 40 bits for

SSLv3

* New message: Change Cipher Spec

— In SSLv2, handshake messages modified the
crypto parameters incrementally.

— CCS enables Handshake messages are used to
build a new "pending" connection state and
switch to 1t all at once.

—_

I ‘ nuol EH&]
> I
:‘/x“‘;ﬁg&_ IT-Secu Ity Conference & Works ops

* New message: Finished

- Exchanged (C->S then S->C) to complete the
handshake

— Sent 1n the new connection state right after
CCS

— Content 1s MD35||SHA-1 (36 bytes) over all
previous handshake messages

— Resists MitM by detecting early
manipulations

al ROOPERS
! "/‘“ IT-Security Conference & Workshops

* Introduced the new concept of "renegotiation"!
— Who knew?!

* Not heavily advertised, the substring "renego" only
appears twice 1n the spec!

* Very elegant, reuses the exact the same handshake
protocol!

» Allows application data to be intermingled with
renego handshake messages

SSLv3

* New message: Hello Request

— Server-initiated renegotiation

* Only one mention in the 63 pages spec about client-
initiated renegotiation:

— "The client can also send a client hello 1n
response to a hello request or on 1ts own
initiative in order to renegotiate the security
parameters 1n an existing connection."

|

3 ‘v I I
! "/‘ L [T-Security Conference & Workshops
==
3
]-Z S 1. 0

~* January 1999 - RFC 2246 - TLS 1.0
* IETF renamed SSL to TLS
— But everyone still calls it SSL

* Removes support for Fortezza

TLS 1.0

~» Defines an abstract Pseudorandom Function (PRF)

— Replaces assortment of MD3S and SHA
combinations

— Uses MD5 and SHA together

* Survives breaks of either one
— For key expansion and Finished

» Shortens Finished message data from 36 to 12 bytes

TLS 1.0 Extensions

-~ * June 2003 - RFC 3546 TLS Extensions

» Updates TLS 1.0 about 4.5 years after-the-fact to
define the general extension format and a few initial
extensions

* Oops - some existing servers abort or hang the
connection

* Doesn't apply retroactively to SSLv2 or 3 (in
practice)

I ROOPERS
"/“ IT-Security Conference & Workshops
==
&

A1

;
X

TLS 1.1+

* April 2006 - RFC 4346 TLS 1.1

* April 2006 - RFC 4366 TLS Extensions
* August 2008 - RFC 5246 TLS 1.2

* Not widely supported at this time

Authentication Gap

 Man-in-the-Middle in Tunnelled Authentication
Protocols

- N. Asokan, Valtter1 Niemi, and Kaisa Nyberg

» Uses the example of PEAP to show that signing the
protocol in one direction and simply tunneling the
authentication of the other independently does not
provide the strongest mutual authentication.

— | ~

‘_ [IT-Security Conference & Workshops

Example: HTTPS Login Form

1. Client strongly authenticates the server with TLS
and PKI

2. Server authenticates the client with
username/password.

wIROOPERS
HTTPS Login Form

» Server presents a certificate which client verifies
through his trusted root CAs. Client uses that public
key to securely negotiate the session key for the
sess101m.

— This simultaneously authenticates the server
to the client and defends the session against
MitM. The session key 1s strongly bound to |
the certificate that the client decided to trust.

wIROOPERS
HTTPS Login Form

» Password-based credentials are passed over https to
the server to authenticate the client. The session key
1s not strongly bound to this transaction.

* The client can ensure the non-existence of a MitM
using PKI.

» But the server has no way to prove the non-
existence of a MitM. He can only rely on the client |
to do a good job of this.

HTTPS Login Form

* But what 1f the client 1s a bozo? What if the client
trusts an evil root CA?

* In this model, the server transitively trusts every
root CA that 1s trusted by the client!

I ROOPERS |
HTTPS Login Form

Trusting a key is not the same as trusting the key's
owner. Trust is not necessarily transferable; I have
a friend who I trust not to lie. He's a gullible person
who trusts the President not to lie. That doesn't
mean I trust the President not to lie. This is just
common sense. If I trust Alice's signature on a key,
and Alice trusts Charlie's signature on a key, that
does not imply that I have to trust Charlie's
signature on a key.

— Philip Zimmerman

I ‘ nuol EH&]
> I
‘\/"4‘;1‘:5&- IT-Secu Ity Conference & Works ops

Authentication Gap

* When form-based and HTTP authentication 1s
simply carried through a TLS connection as an
application protocol, 1t does not provide strong
mutual authentication.

» Strong mutual authentication requires that each
endpoint be able to independently prove the absence
of a MtiM. This can only be done by ensuring that
the authentication process 1n both directions
contributes to the generation of the session key.

()
l‘b‘ > [T-Security Conference & Workshops
%

Authentication Gap

» Packet captures

Vulnerable Client

* Is 1t really a problem with the TLS spec?
 Maybe HTTPS is just using it wrong?

& Workshops

\ROOPER&]
Vulnerable Client

* What's wrong with this client code?
String dnsName = "secure.example.com";
IpAddress 1ip = dnsResolve(dnsName);
TcepSocket s = connectTo(ip);
SSL ssl = connectSSL(s, REQUIRE SERVER CERT);
Cert serverCert = ssl->getPeerCert();
if (serverCert->getSubjectName() != dnsName)

dieWithError("cert mismatch");

exchangeCriticalData(ssl);

I ROOPERS
"/“ IT-Security Conference & Workshops
==
&

Hl

:

Vulnerable Client

* Nothing!

* This code was secure with SSLv2

 Silently becomes vulnerable when used with
SSLv3+ and an SSL/TLS stack that handles
renegotiation transparently for the app (most of
them).

* Secure with disabled or patched renegotiation

Hl

valROOPERS
Vulnerable Client

* There 1s not one tutorial on the web of "Here's
how to use this SSL/TLS library safely" which
provides example code that does everything
correctly.

* Strongly suggests that there are plenty of
vulnerable client apps out there.

* Probably all Perl apps that use SSL/TLS directly

Vulnerable Client

» Patching both the client and server to support RI
makes this application code secure again. It also
re-enables interesting new possibilities.

* not vulnerable -> vulnerable -> not vulnerable
SSLv2 SSLv3+ SSLv3+RI
* Something changed with SSLv3 to break the apps |

— Renegotiation was added

I ROOPERS
| "/‘“ IT-Security Conference & Workshops

Authentication Gap

 TLS Terminology: Session

— Uniquely 1dentified by session 1d given to
client 1n Server Hello message

— Client can request to resume any session at
any time

* Session resumption 1s orthogonal to renegotiation!

* No session 1dentifier 1s carried across renegotiation

Authentication Gap

* TLS Terminology: Connection

— Netscape defined what developers wanted:

a "Secure Sockets Layer"

- Sockets are well understood as a
"connection-oriented" protocol

- OO0 APIs tend to derive the SSL and TCP
objects from a common IO interface

I ROOPERS
| "/‘“ IT-Security Conference & Workshops

Authentication Gap

* TLS Terminology: Connection State

— Sessions and connections are many-to-many
— An 1nstance of a session on a connection

— The specs do not give an explicit name to
this thing of great importance!

— Connection State 1s the best we can come up|
with but 1sn't perfect

e It excludes the 1nitial, null CS

— - " J

Authentication Gap
* Issues of 1dentity

— An authenticated server has an 1dentity.
— An authenticated client has an identity.
— Does an anon endpoint have an i1dentity?

— Does an anon-anon connection have
1dentities?

— In what ways can 1dentity change?

"‘ nuul EH&]
:‘//j“;;gs:‘.._ IT-Secu Ity Conference & Works ops

Authentication Gap
* Yes, and yes.
* Even an anon endpoint can have some 1dentity

— "The same guy as was on the endpoint
number of secure records ago"

* Identities can change across renegotiation

— But are they additive?

Authentication Gap

* Designers who developed renegotiation expected
1dentity would be additive across renegotation.

* Credentials could be "stacked"

— An anonymous endpoint could be upgraded
to authenticated through renegotiation

*e.g. HTTPS

— An endpoint could renegotiate to provide
multiple certificates for their identity

Authentication Gap

* Renegotiation was developed for three purposes:

* 1. To refresh crypto keys

— Probably the most commonly given
justification

— Not the most commonly used 1n practice

— Necessary with the way TLS 1s used?

aTROOPERS

‘ l eeeeeeeeeeeeeeeeeeeeeeeeeee

Authentication Gap

* Renegotiation was developed for three purposes:

» 2. To change cipher spec

— Upgrading crypto strength
- SGC
— Not used much

* Danger sign

———————————————————————————

Authentication Gap

* Renegotiation was developed for three purposes:

* 3. To allow dynamically specifying client cert
requirements

— Probably most important to Netscape's
business case

— Most commonly used case today

Authentication Gap

* Another commonly-cited justification for
renegotiation:

"To protect the client certificate"

* Questionable

— Supposed to be a "public key" right?
— Only protects against passive eavesdropping

— Most apps will provide their client certificatel
cert 1f asked nicely

— - - - - , -

Attack

 Blind plaintext injection

* Client cert stealing/redirection

! "/‘“ IT-Security Conference & Workshops

* Primary attack allows "blind plaintext injection"

The ability to insert attacker-chosen plaintext at a
specific point 1n the protocol stream

- Relatively limited and unusual capability

— Some protocols are affected worse than
others

aTROOPERS

‘ l eeeeeeeeeeeeeeeeeeeeeeeeeee

Blind Plaintext Injection Attack

 HTTPS 1s particularly badly affected

— A relatively important case
— Allows session cookie stealing
— Much like CSRF

* Some mitigations may help
* Some may not (GET -> POST)

! "/“ IT-Security Conference & Workshops

Blind Plaintext Injection Attack

* Server sees the renegotiation

- In fact, he may have requested 1t
* Client generally sees no renegotiation
 Either

— Server accepts client-initiated

— Server requests renegotiation

e various techniques

‘-_——_J

h “ nuu EH&]
:‘/"“;35:‘.._ IT-Secu Ity Conference & Works ops

Client Cert Redirection

Client's client cert credentials can be redirected

— From any client that will provide a cert
— To any TLS server that will accept it

Retroactively authenticates client's request
Potentially a huge compromise
Possibly without user interaction

Client does not see result

——

(1S
l‘:‘/&*« > IT-Security Conference & Workshops
%

Authentication Gap

* Questions!

()
| l"/ IT-Security Conference & Workshops
Al E

Mitigations

* Forbid renegotiation entirely

Mitigations
* Forbid renegotiation entirely

— Easy to implement

Mitigations
* Forbid renegotiation entirely

— Easy to implement

— What most devs expected anyway

Mitigations
* Forbid renegotiation entirely

— Easy to implement
— What most devs expected anyway
- Works great for probably 95%+ of sites

I ROOPERS
"/“ IT-Security Conference & Workshops
==
&

Hl

:

Mitigations
* Forbid renegotiation entirely
— Easy to implement
— What most devs expected anyway
- Works great for probably 95%+ of sites
- Really, really bad!
First round of patches broke stuff

Mitigations

* Things depending on renegotiation:
- Tor

* Wasn't vulnerable code

Mitigations

* Things depending on renegotiation:

- Web Services
* Widely deployed in B2B
* Microsoft has a big investment
* MS shops can use integrated auth

* [t's cross-platform interop that needs
client cert auth the most!

I ROOPERS
"/“ IT-Security Conference & Workshops
==
&

Hl

;

Mitigations

* Things depending on renegotiation:
— Smart cards

» Some deployments have millions of
cards and thousands of servers!

» Work by storing client certs on the chip
» Usually accessed by a PIN
» Used for high-security websites

Mitigations
* The only correct mitigation 1s to fix renegotiation!

Restore the continuity-of-identity guarantee.

>
|

|

o i

"/“ IT-Security Conference & Workshops
==
&

Mitigations

* One method:

At the record layer, have the renegotiated keys
depend on both the new and the old key material.

— Possibly as simple as replacing = with =

= —

Hl

alROOPERS
! "/‘ L [T-Security Conference & Workshops
RIS~

Mitigations

* One method:

At the record layer, have the renegotiated keys
depend on both the new and the old key material.

— Possibly as simple as replacing = with =
* Too good to be true.
- PKCS#11 API doesn't support the change

— Burned into Si1

Mitigations
* Another method:

Inject the previous Finished message into the
beginning of the handshake messages for
constructing the Finished verify data

— Technically clean, simple to describe
- Doesn't require new protocol structures

— Only requires one endpoint to patch

Mitigations
* Another method:

Inject the previous Finished message into the
beginning of the handshake messages for
constructing the Finished verify data

— Technically clean, simple to describe

- Doesn't require new protocol structures
- XXXXX

— Not deployable by some sites for years!

* Changes crypto calculations

Mitigations
* Method suggested by Project Mogul

* Defines a TLS extension which sends the
verify data from the previous Finished message on
the Client and Server Hellos

— Client and server cooperate to exclude MitM
— Requires both client and server to patch
— Requires support for TLS extensions

— A few hundred lines of code

"/“ IT-Security Conference & Workshops
==
&

QU

<
|
X

Mitigations
 RFC 5746!
— Accepted by IETF/IESG

- Several vendors have shipped code!

* Opera 10.50
* www.mikestoolbox.org
* Firefox (alpha/beta??)

— Many others have 1t internally

o i

A1

;
N

IROOPERS |
TLS Authentication Gap

Additional resources
 IETF [TLS] mailing list
https://www.1etf.org/mailman/listinfo/tls

* [mogul-open]

http://lists.links.org/mailman/listinfo/mogul-open
* PhoneFactor (status of patches)

http://www.phonefactor.com/sslgap
* Marsh's blog

T —

http://extendedsubset.com/

()
l‘b‘ > [T-Security Conference & Workshops
%

Authentication Gap

* More questions!

