
MY FAVORITE THINGS

Sergey Bratus

TRADITIONAL

Raindrops on roses,

Whiskers on kittens,

Bright copper kettles,

Warm woolen mittens,

...

H.P. LOVECRAFT’S

Shoggoths that glibber

and ghouls that go meeping,

Eldritch dark ichor,

and the dead never sleeping;

Night-gaunts that flap with
their blasphemous wings,

these are a few of my favorite
things.

http://transform.to/~mjc42/tut/library/humour.html

H.P. LOVECRAFT’S

Shoggoths that glibber

and ghouls that go meeping,

Eldritch dark ichor,

and the dead never sleeping;

Night-gaunts that flap with
their blasphemous wings,

these are a few of my favorite
things.

http://transform.to/~mjc42/tut/library/humour.html

MY FAVORITE THINGS

The halting problem & friends

“I’d rather write programs  
to write to run on programs
than write programs”

Parser differentials

in every OSI model layer!

"even more undecidability!"

DIFF KEYNOTE.{1ST,2ND}

Hard vs (provably) Impossible

"Hard" will get figured out, impossible will keep failing

Hard: flight. Impossible: perpetual motion

Not all complexity is created equal

Landscape has cliffs & sheer drops into the abyss

We must know & avoid them. All other kinds of
engineers do!

DIFF KEYNOTE.{1ST,2ND}
Offense creates security science

Exploits are proofs. In traditional sciences, "zero-day" is
simply called "new result" (a.k.a. "worth publishing")

"A theory of security comes from a theory of insecurity"

“THE DARK SIDE”

How you learned  
about software How it actually works

IMPOSSIBILITY STRIKES
BACK

“Natural law”: you can’t stop nature
from doing this no matter  
how hard you try

Perpetual motion 1st kind  
(free work without energy input)

Lossless energy transformations
(2nd kind, no energy leaks)

Speed of light, Heisenberg’s
uncertainty, ...

WHAT’S YOUR
IMPOSSIBILITY?

Physical world engineering is defined by physical
impossibilities

Impossibility doesn’t mean we are doomed, it just means
an engineer must:

Know the limiting laws

Never base designs on hopes of cheating them

unless, of course, your intent is sabotage.

ASK AN ENGINEER

What’s your impossibility? What’s wrong to attempt?
What your design should never depend on solving?

Mechanical: conservation laws, ...

Thermal: thermodynamics laws, ...

Computer: energy dissipation, latency < speed of light,  
 quantum effects, ...

Software: ??? (crypto? maybe...)

Oh ye seekers after perpetual
motion, how many vain
chimeras have you pursued?  
Go and take your place with
the alchemists.  
 da Vinci, 1494

Oct. 1920

CYBERNETICS?

“One of the chief duties of the
mathematician in acting as an
adviser to scientists is to
discourage them from
expecting too much from
mathematics.” 
 
 -- Norbert Wiener, 1964

COMPUTERS CAN IMPROVE
EVERYTHING!

“Since symbols can be written and moved about with
negligible expenditure of energy, it is tempting to leap to
the conclusion that anything is possible in the symbolic
realm. This is the lesson of computability theory (viz., solvable
problems vs. unsolvable problems), and also the lesson of
complexity theory (viz., solvable problems vs. feasibly solvable
problems): physics does not suddenly break down at this
level of human activity. It is no more feasible to construct
symbolic structures without using energy than it is possible to
construct material structures for free.”

Richard A. DeMillo, Richard J. Lipton, and Alan J. Perlis, 1979  
‘Social Processes and Proofs of Theorems and Programs’; Yale tr82

CYBERCYBER!

“One of the chief duties of the mathematician
computer scientist in acting as an adviser to  
scientists everyone is to discourage them from
expecting too much from mathematics computers” 
 -- stolen from Norbert Wiener, 2013

CYBERCYBER!

“One of the chief duties of the mathematician
computer scientist hacker in acting as an adviser to
scientists everyone is to discourage them from
expecting too much from mathematics computers” 
 -- stolen from Norbert Wiener, 2013

INPUT IS "CYBER KRYPTONITE!"

Programs are bad at analyzing programs

All inputs are programs  

Programs are bad at analyzing inputs

we must know & avoid impossibilities

HALTING PROBLEM

“I heard you had a program for analyzing programs, so
I put a program that analyzes programs into a program
for you to analyze”

“Let h(x,i) = 1 if program x halts on input i, 0 otherwise”

“for any totally computable function f(x,y), h(g,g) != f(g,g) for
the program g that implements

f(g,g)=0 => g(g) = 0 => h(g,g)=1

f(g,g)=1 => g(g) loops => h(g,g)=0

HAVE YOU HEARD THIS BEFORE?

A barber hacker can only shave hack
those who don’t hack themselves.
Can the hacker hack himself?

Bertrand Russell loves you and
wants you to be happy

INPUTS VS PROGRAMS

INPUTS VS PROGRAMS

INPUTS VS PROGRAMS

INPUTS VS PROGRAMS

INPUTS VS PROGRAMS

HINDSIGHT IS
20/20,

RIGHT?

Workplace safety rules
are hindsight, too

“written in blood”

Such hindsight is long
overdue in software!

Don’t check  
for voltage  

with your hand

HINDSIGHT IS
20/20,

RIGHT?

“A BRIGHT LINE FOR INPUTS”

Checks

Input validation

malloc()

memcpy()

+, - , *, /
Recognition

THE COMMON FAILURE PATTERN

“Sanity Checks”

“Input sanitization”

malloc()

memcpy()

+, - , *, /

THE COMMON FAILURE PATTERN

“Sanity Checks”

“Input sanitization”

malloc()

memcpy()

+, - , *, /

HEARTBLEED IS A
PARSER BUG!

SSL3_RECORD

HeartbeatMessage

SSL3_RECORD

HeartbeatMessage

HEARTBLEED IS A
PARSER BUG!

SSL3_RECORD

HeartbeatMessage

HEARTBLEED IS A
PARSER BUG!

SSL3_RECORD

HeartbeatMessage

HEARTBLEED IS A
PARSER BUG!

Must agree,  
never checked

HEARTBLEED IS A
PARSER BUG!

HEARTBLEED PATCH

Be careful with your shovel!

PARSER CODE SHOULD
READ LIKE THE

GRAMMAR

Your input is a language;
treat it as such:  

write a grammar spec!

FULL RECOGNITION

utf-8 manul by

FULL RECOGNITION

"GOTO FAIL"

Apple’s SSL state machine, hand-coded

State machine done wrong: code must be generated!

GOTO FAIL;

Apple’s SSL state machine, hand-coded

State machine done wrong: code must be generated!

Don’t step on fish!

GNU-TLS HELLO BUG

https://github.com/azet/CVE-2014-3466_PoC/blob/master/poc.py

http://radare.today/technical-analysis-of-the-gnutls-hello-vulnerability/

CVE-2014-3466 ...because SSL/TLS misery loves company!

Don’t stack bricks
too high

NESTED LENGTH FIELDS ARE
DANGEROUS SYNTAX!

Nested lengths are about data structure boundaries and
nesting => they are syntax

Length checks must be checked in the parser

e.g., if nested lengths do not agree the message is
invalid

Syntactically invalid messages should not be copied &
processed

Semantic actions should wait until all syntax is checked

...even if this means scanning message to the end

MORE MISERY! MS14-066
MS SChannel: New code, same ASN.1 data.

http://www.securitysift.com/exploiting-ms14-066-cve-2014-6321-aka-winshock/

http://www.securitysift.com/exploiting-ms14-066-cve-2014-6321-aka-winshock/

BERSERK!

A variant of Bleichenbacher attack on PKCS#1 v.1.5
(CVE-2006-4339)

http://www.intelsecurity.com/advanced-threat-research/berserk.html

http://www.intelsecurity.com/advanced-threat-research/berserk.html

PARSER DIFFERENTIALS

Two parsers, one message ...  
 two different parses!

We’ve seen this before in:

“Insertion, Evasion, and Denial of Service: Eluding
Network Intrusion Detection”, Ptacek & Newsham, 1998

X.509 certs: “PKI layer cake”, Kaminsky, Sassaman,
Patterson, 2010

NIDS EVASION = PARSER
DIFFS

“Insertion, Evasion, and Denial of Service: Eluding Network
Intrusion Detection”, Ptacek, Newsham, 1998

Also Vern Paxson et al, 1999, protocol normalization

UNDECIDABLE PARSER DIFFERENTIALS

“PKI Layer Cake: New Collision Attacks Against the
Global X.509 Infrastructure", Dan Kaminsky, Len
Sassaman, Meredith L. Patterson, 2010

X.509 / ASN.1 parsers disagree on
what’s in a common name (CN) =>
CA thinks it signs X, browser sees Y

Checking equivalence of parsers
beyond deterministic context-free
languages is undecidable

THE “UNDECIDABILITY CLIFF”

IPv4 XML
JSON HTML5IPv6

JSPDF

X.509

Flash

ANDROID MASTER KEY: A PARSER
DIFFERENTIAL

Verification Installation

Unzip Unzip

Verify Install

Bad signaturehttp://www.saurik.com/id/17

http://www.saurik.com/id/17

Android packages are signed & only installed if signature
checks out

Java crypto verifier followed by C++ installer

C++ has unsigned integers, Java doesn’t => different results of
unzipping

Different contents “verified” vs installed

http://www.saurik.com/id/{17,18,19}

ANDROID MASTER KEY: A PARSER
DIFFERENTIAL

http://www.saurik.com/id/17

Initial fixes still kept two
different parsers

Recipe for disaster:
undecidable beyond
deterministic context free
languages 

❖ Finally fixed right: the same parser used for both
verification & installation, not two different parsers

ANDROID MASTER KEY: A PARSER
DIFFERENTIAL

ANDROID MASTER KEY: A PARSER
DIFFERENTIAL

Verification Installation

Unzip Unzip

Verify Install

Bad signature?http://www.saurik.com/id/17

Be careful with your pitchfork!

http://www.saurik.com/id/17

HTTP CHUNKED
ENCODING

Eliminates the need for Content-Length header

meant for cases where the size of HTTP response isn’t
known when response is started

e.g., unknown number of records fetched from a database

APACHE CVE-2002-3092

DEADBEEF

APACHE CVE-2002-3092

DEADBEEF

APACHE CVE-2002-3092

DEADBEEF

APACHE CVE-2002-3092

DEADBEEF

Watch where you step!

FAST FORWARD 11
YEARS...

Nginx is found to have an exact same issue!

STATE MACHINE DONE
WRONG (AGAIN)

ngx_http_parse.c:

57 switch statements

272 single-char case clauses

2300+ SLOC

States and inputs for all grammar elements all mixed
together, unintelligible

Parser combinator style would have exposed the issue
immediately, not 10+ years after the same bug in Apache

STATE MACHINE DONE
WRONG (AGAIN)

ngx_http_parse.c:

57 switch statements

272 single-char case clauses

2300+ SLOC

States and inputs for all grammar elements all mixed
together, unintelligible

Parser combinator style would have exposed the issue
immediately, not 10+ years after the same bug in Apache

Look under your feet!

system(“your command here”) actually
means 
 parse_and_execute(ENV strings)

“Bash really is a local app that woke up one morning
on the HMS CGI-BIN with a pounding headache”

❖ Computation power exposed to external inputs is
computation power given to attacker

FOR DESERT:
SHELLSHOCK!

FOR DESERT:
SHELLSHOCK!

system(“your command here”) actually
means 
 parse_and_execute(ENV strings)

“Bash really is a local app that woke up one morning
on the HMS CGI-BIN with a pounding headache”

❖ Computation power exposed to external inputs is
computation power given to attacker

WHAT FUTURE HOLDS

PARSER CONSTRUCTION

Valid or expected inputs are a language & must be so treated

Patch to Postel’s principle: “[For security of your users],  
be definite about what you accept!”

If you hand-program your parser, the grammar it expects/
accepts must be clear from the code.

Hammer, a parser-combinator style kit for C/C++, Java,
Python, .Net, Ruby, ...  
https://github.com/UpstandingHackers/hammer  
(Meredith L. Patterson et al)

PARSER CONSTRUCTION

Input&

Processing:&&
malloc()&

memcopy()&
+,&*,&9,&/,&…&&

Recognizer&
for&input&
language&

Grammar&
Spec&

Reject&&
invalid&
inputs& Accept&valid/expected&inputs,&

call&semanFc&acFons&

Well-typed objectsUntrusted input streams

PARSER-COMBINATOR STYLE:
PARSERS ALL THE WAY DOWN

MAKE THE GRAMMAR THAT PARSER ACCEPTS
CLEAR FROM THE CODE!

 C0 C3
01 3C 02 06
3C 03 06 3C
04 06 3C 01
06

start = h_token(“\x05\x64”);
len = h_int_range(h_uint8(), 5, 255);
ctrl = h_uint8();
dst = h_uint16();
src = h_int_range(h_uint16(), 0, 65519);
crc = h_uint16();
hdr = h_attr_bool(h_sequence(h_ignore(start),
 len, ctrl, dst, src, crc, NULL),
 validate_crc);
frame = h_attr_bool(h_sequence(hdr,
 h_optional(transport_frame),
 h_end_p(), NULL),validate_len);

05 64 14 F3
01 00 00 04
0A 3B

9A 12

AUDITING WITH LANGSEC

Practical rules for input-language decisions: which to choose?

 JSON vs. XML vs. ASN.1

DER vs. BER

Auditing of input-handling code

“Where is your recognizer?”

“Do you really need recursive nesting syntax/ cross-layer
context dependency/ cross-object dependency?

XML JSON

635
(170 XXE)

58

CVEs:

PROOFS TO THE RESCUE?

AB OVO

Proving correctness of
programs deductively,
from axioms

“..axioms offer a simple
and flexible technique for
leaving certain aspects of
a language undefined ...
[which is] absolutely
essential for
standardization purposes.”

C.A.R. HOARE, 1968..

P { Q } R

Precondition ResultCode

1969

Assume Q is proven correct, P { Q } R

If P isn’t quite right, what will { Q } do to R?

ENTER WEIRD
MACHINES

ENTER WEIRD
MACHINES

Assume Q is proven correct, P { Q } R

If P isn’t quite right, what will { Q } do to R?

What can we make Q compute 
by varying inputs it wasn’t verified for?

ABSTRACTION VS COMPOSITION

So you put together { Q1 ; Q2 }. How many programs did
you actually create?

Instruction Q1 Instruction Q2

Instruction Q3 Instruction Q4

...

Coq, the proof assistant
than can do induction
proofs in |N

Bit-level models of x86
instructions + mnemonics

Verified assembly language

Also, see Ironclad,
Hawblitzel et al., OSDI’14

EXPLOITATION IS
VERIFICATION

“HOUSTON, WE HAVE A
PROBLEM”

Wassenaar Arrangement (Dec. 2013) defines “intrusion
software”

“...The modification of the standard execution path
of a program or process in order to allow the execution of
externally provided instructions...”

Controls means of generating, developing, operating
“intrusion software”

Inputs become regulated arms?

More in our “Information Security War Room”
invited talk with FX at USENIX Security 2014

Image credit: FX

RECOMMENDATIONS

Specify your valid & expected input with a grammar

Keep the input language as simple as possible

If you hand-write the parser, make sure the grammar is
obvious from code

Use parser combinator style! (e.g., Hammer)

Don’t mix semantic actions with syntax recognition!

“Full recognition before processing”

Careful with memcopy, etc. before input is fully validated!

RECOMMENDATIONS

Trustworthiness must at least include constraining
& isolating emergent computation (“weird
machines”)

Co-design data formats & their parsing code to
have least complexity, to make verification tractable

The only way to avoid complexity cliff

LANGSEC VIEW OF CWE

2009$CWE/SANS$Top25

2010/2011$CWE/SANS$Top25

2009$CWE/SANS$Top25

2010$CWE/SANS$Top25

2011$CWE/SANS$Top25
(and$s6ll$current)$

…are$failures$$
of$recogni6on!$

Large$classes$of$
weaknesses…$

LANGSEC WORKSHOP
2015

Second year of the LangSec workshop at the  
IEEE Security & Privacy Symposium

http://spw15.langsec.org/ -- Thu May 21, 2015

