MY FAVORITE TH

r

AN

\

e w

SERGEY BRATUS

% Raindrops on roses,
¢ Whiskers on kittens,
% Bright copper kettles,

¢ Warm woolen mittens,

A
€
v

H.IP

o

% Shoggoths that glibber

% and ghouls that go meeping,

% Eldritch dark ichor,

% and the dead never sleeping;

% Night-gaunts that flap with
their blasphemous wings,

% these are a few of my favorite

things.

(Lhttp://transform.to/-mjc42/tut/library/humour.html

H.P. LOVE

% Shoggoths that glibber

% and ghouls that go meeping,
% Eldritch dark ichor,

% and the dead never sleeping;

& Night-%aunts that flap with

their blasphemous wings,

% these are a few of my favorite

things.

http://transform.to/-mjc42/tut/library/humour.html

MY FAVORITE THINGS

% The halting problem & friends

% “I'd rather write programs
to-write to run on programs
than write programs”

& Parser differentials
% in every OSI model layer!

'H

% "even more undecidability!

DIFF KEYNOTEJ{IST,2ND}

¢ Hard vs (provably) Impossible
% "Hard" will get figured out, impossible will keep failing
% Hard: flight. Impossible: perpetual motion

% Not all complexity is created equal
% Landscape has cliffs & sheer drops into the abyss

& We must know & avoid them. All other kinds of
engineers do!

DIFF KEYNOTEJ{IST,2ND}

% Offense creates security science

% Exploits are proofs. In traditional sciences, "zero-day" is
simply called "new result" (a.k.a. "worth publishing")

% "A theory of security comes from a theory of insecurity"

. John Lambert Follow
JohnLaTwC

If you shame attack research, you misjudge
its contribution. Offense and defense aren’t

peers.| Defense is offense’s child.

DE’

r
.

THE DARK S

S

How it actually works

How you learned
about software

S

IMPOSSIBILITY STRIKI
BACK

S,
@

% “Natural law”: you can’t stop nature vl)
from doing this no matter {111 gl llﬂlrh,/A U
A i B
i e § - ";:. | ih ‘

how hard you try f

> A
Il

% Perpetual motion 1st kind
(free work without energy input)

% Lossless energy transformations

(2nd kind, no energy leaks)

% Speed of light, Heisenberg’s

uncertainty, ...

WHATS YOUR
IMPOSSIBILITY?

% Physical world engineering is defined by physical
impossibilities

% Impossibility doesn’t mean we are doomed, it just means
an engineer must:

¢ Know the limiting laws
¢ Never base designs on hopes of cheating them

% unless, of course, your intent is sabotage.

ASK AN ENGINEER

¢ What’s your impossibility? What’s wrong to attempt?
What your design should never depend on solving?

% Mechanical: conservation laws, ...
© Thermal: thermodynamics laws, ...

© Computer: energy dissipation, latency < speed of light,
quantum eftects, ...

% Software: 2ne (crypto? maybe...)

Ob ye seekers after perpetual
motion, bow many vain
chimeras have you pursued?
Go and take your place with

the alchemists.

da Vinci, 1494

| OCTOBER

POp“lar | See page 26

25 CENTS
. Perpetual Motion? .

Oct. 1920 I

~~~~~~ -~




CYBERNIET]

r

“One of the chief duties of the
mathematician in acting as an

adviser to scientists is to
discourage them from
expecting too much from
mathematics.”

-- Norbert Wiener, 196 4

A

CS

2

o




COMPUTERS CAN IMPROVE

EVERY THING!

“Since symbols can be written and moved al

bout with

negligible expenditure of energy, it is tempting to leap to
the conclusion that anything is possible in the symbolic
realm. This is the lesson of computability theory (viz., solvable
problems vs. unsolvable problems), and also the lesson of
complexity theory (viz., solvable problems vs. feasibly solvable
problems): physics does not suddenly break down at this
level of human activity. It is no more feasible to construct
symbolic structures without using energy than it is possible to

construct material structures for free.”

Richard A. DeMillo, Richard J. Lipton, and Alan J. Perlis, 1979

‘Social Processes and Proofs of Theorems and Programs’; Yale tr82




CYBERCYBER!

“One of the chief duties of the mathematician

computer scientist in acting as an adviser to
seientists everyone is to discourage them from
expecting too much from mathematies computers”

-- stolen from Norbert Wiener, 2013




CYBERCYBER!

“One of the chief duties of the mathematician
computerscientist hacker in acting as an adviser to

seientists everyone is to discourage them from

expecting too much from mathematies computers”

-- stolen from Norbert Wiener, 2013

] == j’]‘]



INPUT IS "CYBER KRYPTONITE!"

% Programs are bad at analyzing programs

% All inputs are programs

% Programs are bad at analyzing inputs

¢ we must know & avoid impossibilities




| SCOOPING THE LOOP SNOOPER |
A proof that the Halting Problem is undecidable

Geoffrey K. Pullum

No general procedure for bug checks will do.

Now, I won’t just assert that, I’ll prove it to you.

I will prove that although you might work till you drop,
you cannot tell if computation will stop.

You can never find general mechanical means

for predicting the acts of computing machines;

it’s something that cannot be done. So we users
must find our own bugs. Our computers are losers!




HALTING PROBLEM

¢ “I beard you bad a program for analyzing programs, so
I put a program that analyzes programs into a program
for you to analyze”

¢ “Let h(x,i) = 1 if program x halts on input i, o otherwise”

% “for any totally computable function fix,y), h(g,9) = f{g.0) for

the program g that implements R
if f(i,i) == 0 then
f(g,g)zo = g@) = Ofses = h(g,g)=1 return 0
else

f(g,g)=1 = g(g) lOOpS => h(g,g):o loop forever




HAVE YOU HEARD THIS BEFORIE?

Bertrand Russell loves you and
wants you to be happy

e L~/
A barber hacker can only shave hack

those who don’t hack themselves.

Can the hacker hack himself?

= P




INPUTS Vo PROGRAMS




INPUTS Vo PROGRAMS




INPUTS Vo PROGRAMS




INPUTS Vo PROGRAMS




INPUTS Vo PROGRAMS

hbtype = *p++;

2. n2s(p, payload);
72

o~

p]_ = P A
yd
S
—
*bp++ = TLS1 HB RESPONSE; A8 _/;&\\\\\\‘
=
s2n(payload, bp); 01101

memcpy(bp, pl, payload);




HINDSIGHT IS
20/20,
RIGIHT?

FrE L. OFP Z2 D

D E ¥ P O T X C



HIIN

ISIGHT IS

20/20,

RIGIHT?

¢ Workplace safety rules
are hindsight, too

$ “written in blood”

% Such hindsight is long

overdue in software!

HE POBREP

ECITIb AN




_.“o-n--“-. L B -..o.! . —

.'t

L
o



 HABEPXY
PABOTAUIOT

—H,
e Epe




/

HABEPXY

a0
= 3 & m=g
0 58 -

PAbOTUOT

AR o

— ..

A
- Baer B4 Bue UV e

. D [
) .~ ‘ p T —

"

o, A% P
’
.
"

<




"A BRIGHT LINI

Checks

Input validation

Recognition

L4

FOR INPUTS”

malloc()
memcpy( )
b %




THE COMMON FAILURE PATTERN

“Sanity Checks”
+, - ) *’ /
malloc()
“Input sanitization”
memcpy( )




THE COMMON FAILURE PATTERN

“Sanity Checks”

_ Xk
+7 9 7/
malloc() B B &
«“t 4 : . 99
pu 111 S o PIAE
e %
PP 1SS 1= / )
\l\\&\k& = N>
= 101101t
memc / @ 7




HEARTBLEED IS A
PARSER BUG!

Heartbeat sent to victim

SSL3 RECORD

HeartbeatMessage

Type Length Payload data
TLS1_HB_REQUEST 1 byte




Heartbeat sent to victim
SSLv3 record:

HEARTBLEED IS A

PARSER BUG!

HeartbeatMessage

Type

Length Payload data

TLS1_HB_REQUEST

| 1 byte




Heartbeat sent to victim

SSLv3 record:

Length S SL3_RECORD
4 bytes

HEARTBLEED IS A

PARSER BUG!

HeartbeatMessage

Type

TLS1_HB_REQUEST

Length Payload data
65535 bytes ' byte




HEARTBLEED IS A
PARSER BUG!

Heartbeat sent to victim

SSLv3 record:

Type

TLS1_HB_REQUEST

Length P
65535 bytes ' byte

Victim’s response

SSLv3 record:
Length
65538 bytes

HeartbeatMessage:

Type Length Payload data

TLS1_HB_RESPONSE 65535 bytes | 65535 bytes 3




HEARTBLEED IS A
PARSER BUG!

hbtype =

Heartbeat sent to victim

* ™
SSLv3 record: p++ r

n2s(p, payload);
pl = p;

Length
4 bytes

Must agree,

never checked

HeartbeatMessage:
Type Length Payload data
TLS1_HB_REQUEST 65535 bytes | 1 byte
Victim’s response
* = .
SSLu3 record: bp++ = TLS1_HB_RESPONSE;
Length s2n(payload, bp);
peesn byles memcpy (bp, pl, payload);
HeartbeatMessage:
Type Length Payload data
TLS1_HB_RESPONSE 65535 bytes | 65535 bytes




+ + + F F+F

/* Read type and payload length first */

hbtype = *p++;
n2s(p, payload);
pl = p;

if (s->msg _callback)
s->msg_callback(0, s->version, TLS1_RT_ HEARTBEAT,
&s->s83->rrec.dataj(0)], s->s3->rrec.length,

8, s->msg_callback_arg);

/* Read type and payload length first */
if (1 + 2 + 16 > s->s83->rrec.length)

return 0; /* silently discard */
hbtype = *p++;

n2s(p, payload);
if (1 + 2 + payload + 16 > s->s3->rrec.length)
return 0; /* silently discard per RFC 6520 sec. 4 */

if (hbtype == TLS1 HB REQUEST)
{
unsigned char *buffer, *bp;
unsigned int write length = 1 /* heartbeat type */ +
2 /* heartbeat length */ +
payload + padding;
int r;

dtlsl write bytes(s, TLS1 RT HEARTBEAT, buffer, 3 + payload + padding);
dtlsl write bytes(s, TLS1_RT HEARTBEAT, buffer, write_ length);

r
r

if (r >= 0 && s->msg_callback)
s->msg_callback(l, s->version, TLS1 RT HEARTBEAT,
buffer, 3 + payload + padding,
buffer, write_length,
s, s->msg_callback_arg);




/* Read type and payload length first */

hbtype = *p++;
n2s(p, payload);
pl = p;

if (s->msg _callback)
s->msg_callback(0, s->version, TLS1_ RT_ HEARTBEAT,
&s->s83->rrec.dataj(0)], s->s3->rrec.length,

8, s->msg_callback arg);

/* Read type and payload length first */
if (1 + 2 + 16 > s=->s83->rrec.length)
return 0; /* silently discard */
hbtype = *p++;
n2s(p, payload);
if (1 + 2 + payload + 16 > s->s83->rrec.length)
return 0; /* silently discard per RFC 6520 sec. 4 */

if (hbtype == TLS1 HB REQUEST)
{ .
. abalztla a¥®= * = A A
1 /* heartbeat type */ +
2 /* heartbeat length */ +
payload + padding;

dtlsl write bytes(s, TLS1 RT HEARTBEAT, buffer, 3 + payload + padding);
dtlsl write bytes(s, TLS1 _RT HEARTBEAT, buffer, write_ length);

if (r >= 0 && s->msg_callback)
s->msg_callback(l, s->version, TLS1 RT HEARTBEAT,
buffer, 3 + payload + padding,
buffer, write length,
s, s->msg_callback arg);




/* Read t

- hbtype = 1
- n2s(p, pa)
pl = p;

if (s->ms¢
S«

+ /* Read t
+ if (1 + 2
+ r
+ hbtype = -
+ n2s(p, pa!
+ if (1 + 2
+ r
plL = D7
+
if (hbtypt
{
& ul
+
+
- r
+ r
if
+

—— .-——--‘:bm

. -
-—

>ad + padding);
1gth);




Your input is a language;
treat it as such:
write a grammar spec!

PARSER CODE SHOULD
READ LIKE THE
GRAMMAR




|
|

CULL RECOGNITION

-.'..‘-_-'\Q-..-:v"v s > AN
& 53 3> P

\




FULL RECOGNITION

/*

MANUL THE LANGSEC CAT SAYS:

</ \» S B
S>== 0 v 6 ==% sy e ] e e e ]
N AN [t ] e e | Sy S | e
/ S | BN [ SN e I |
/ Vi before processing
| | L i e
WG L e A | A R A A [P [ Rl e [ I P[]
\_oo_oo / _/ I /28N O G R D R G I I I Y Y D I
] e e A G e | i e e ] o e B e P
*/

v “ Melissa MEéAlooca

= @'  @oxabadid
utis manylioy @4 31;:.320.9985




‘GOTO FAIL"

hashOut.data = hashes + SSL MD5 DIGEST LEN;
hashOut.length = SSL_SHAl DIGEST_ LEN;

if ((err = SSLFreeBuffer(&hashCtx)) != 0)
goto fail;
if ((err = ReadyHash(&SSLHashSHAl, &hashCtx)) != 0)
goto fail;
if ((err = SSLHashSHAl.update(&hashCtx, &clientRandom)) != 0)
goto fail;
if ((err = SSLHashSHAl.update(&hashCtx, &serverRandom)) != 0)
goto fail;
if ((err = SSLHashSHAl.update(&hashCtx, &signedParams)) != 0)
oto fail;
goto fail; /* MISTAKE! THIS LINE SHOULD NOT BE HERE */ |
if ((err = SSLHashSHAl.final (&hashCtx, &hashOut)) != 0)
goto fail;

err = sslRawVerify(...);

% Apple’s SSL state machine, hand-coded

¢ State machine done wrong: code must be generated!

C



% Apple’s SSI

¢ State mac e generated!




=it

GNU-TLS HELLO BUG

CVE-2014-3466 ...because SSL/TLS misery loves company!

- if (len < session_id len) {
+ if (len < session_id_len || session_id_len >
TLS MAX SESSION ID SIZE) {

https://github.com/azet/CVE-2014-3466_PoC/blob/master/poc.py

http://radare.today/technical-analysis-of-the-gnutls-hello-vulnerability/

{




T;POC for CVE-2014-3466

# (gnutls: insufficient session id Length check in _gnutls_read server_hello)
by

# Author:  Aaron Zauner <azet@azet.org>

[
# Record Layer

R_Type = '16' # Handshake Protocol

R_Version = '3 01’ # TLS 1.0

R_Length =(‘ee fa' )  # 250 Bytes

# Handshake Protocol: ServerHello

HS_Type = '92' # Handshake Type: ServerHello
HS_Length =(‘00 00 f6') # 246 Bytes

HS_Version = '03 o1' # TLS 1.0

HS_Random = '

53 8b 7f 63 c1 @e 1d 72 ©a b3 f8 a7 @f f5 5d 69
65 58 42 80 c1 fb 4f db 9a aa @4 a3 d3 4b 71 c7

# Random (gmt_unix_time + random bytes)
HS_SessID Len =('c8' # Session ID Length 200 Bytes (!)
HS_SessID Data = '

f £F ff £f fF ff ff £f ff ¥ ff ff fF f £ Ff

ff £F ff ff fF ff ¥ £f ff f+ £f £f fF £f fF Ff

ff fF ff ff ff ff ff ff fFf fF fFf ff £F ff £

[
ff fF ff ff £ £f ff £F £Ff fF ff ff fF ff ¥ ff
f £ ff ff £ ff £ ff ff ff ff ff ff ff ¥ ff
Y # Session ID Data (Payload)

=




%-# Record Layer

R_Type = '16' # Handshake Protocol
R_Version = '03 01' # TLS 1.0
R_Length =<'00 fa' ) # 250 Bytes

# Handshake Protocol: ServerHello

HS_Type = '02' # Handshake Type: ServerHello
HS_Length =<'90 00 f6') # 246 Bytes

HS_Version = '3 01’ # TLS 1.0

HS_Random = """

53 8b 7f 63 c1 @e 1d 72 ©a b3 f8 a7 of 5 5d 69
65 58 42 80 c1 fb 4f db 9a aa ©4 a3 d3 4b 71 c7
Y # Random (gmt _unix_time + random bytes)
HS_SessID Len =('c8' # Session ID Length 2060 Bytes (!)
HS_SessID Data = '

f fF ff ff fF ff fF ff ff fF ff ff £ Ff £ £

ff £F fFf £ff fF ff ff ff ff £ £f ff £ ff ff ff

£f £f ff £f ff £f £f £f £f £f £f £f £f f £f £F

" ff £f ff ff £f f ff ff ff £f £f ff ff ff ff ff
ff £f ff fF fF ff fF ff ff fF f ff ff ff ff ff
Y # Session ID Data (Payload)

MaliciousServerHello = (
R_Type + R_Version + R_Length -
HS_Type + HS_Length + HS_Version =

HS_Random + HS_SessID_Len + HS_SessID Data
% ).replace(’' ', "").replace('\n', '').decode('hex")




T‘# Record Layer
R_Type = '16' # Handshake | "..n.“

T ff £f ff £f £f £f ff £f £f £f £f ff £f £f £f

MaliciousServerHello

\J
R_Version = 'e3 01’ # TLS 1.0 !"n“.l...
R_Length =(‘ee fa' )  # 250 Bytes

# Handshake Protocol: ServerHello

HS_ Type = '92’ # Handshake '
HS_Length =("e0 00 f6') # 246 Bytes
HS_Version = 'e3 o1’ # TLS 1.0
HS_Random = '

53 8b 7f 63 c1 @e 1d 72 ©a b3 8 a7 ef 5 5d
65 58 42 80 cl1 fb 4f db Sa aa 04 a3 d3 4b 71
Y # Random (gm
HS_SessID Len =Cc8' ) # Session ID
HS_SessID Data = """

ff fF fFf fFf £ £f £ £f ff fF £ £ fF £f ff
ff £+ ff fFf £ £f £ £f ff fF fFf £ fF ff ff

£f ff £f £f £f ff £f £f £f £f £f £f £f Ff £F

F ff ff ff £ ff ff £ff ff fF ff £ £+ £Ff £f
e # Session ID

= ( L
R_Type + R_Version + R_Length [
HS_Type + HS_Length + HS_Versiog .

HS_Random + HS_SessID Len + HS_SessID§¥’ s

).replace(’ ', "').replace('\n’, ").decodeg' NP g = <
F W VR s ??‘.'.‘. S - S



S

| NESTED LENGTH FIELDS ARI
DANGEROUS SYNTAX!

L4

% Nested lengths are about data structure boundaries and
nesting => they are syntax

% Length checks must be checked in the parser

% e.g., if nested lengths do not agree the message is
invalid

% Syntactically invalid messages should not be copied &
processed

% Semantic actions should wait until all syntax is checked

% ...even if this means scanning message to the end




MORE MISERY! MS14-066

¢ MS SChannel: New code, same ASN.1 data.

:748598ce 0fbe06 NOVZ X eax,byte ptr [esi]
001b:748598d1 Dfbedell movzx ecx, byte ptr [esi+l
001b:748598d5 cle008 shl eax, 8

d=:0023:002cf29a=47

001b:748598d8 03cl add Sax, ecCX

001b:748598da 8d4802 lea ecx, [eax+2]

001b:748598dd 3b4dd0c Cmp ecx,dwvord ptr [ebp+0Ch]

001b:748598e0 77da ja schannel |ICS=13Tl=sServerContext . :DigestCertVerifvy+0x196 (748598bc)
001b:748598e2 50 push eax

001b:748598e3 83ck02 add esi, 2

001b:748598e6 56 push esl

001b:748598e7 f£75f4 push dword ptr [ebp-0Ch]

001b:748598ea f£75f0 push dword ptr [ebp-10h]

001b:748598ed f£75f8 push dword ptr [ebp-8]

001b:748598f0 57 push edi

001b:748598f1 =8b381ffff call schannel |CheckClientVerifyMessage (74851aa9)

001b:748598f6 ebi3c 1mp schannel ICS=s13T]1=sServerContext | :DigestCertVerifv+0x20e (74859934)

Command - Kernel 'com:pert=coml,baud=115200" - WinDbg:6.2.9200.16384 X86 T t | - f - &
A HMI\HUL&L - e Al A W P

schannel |CSsl13T1lsServerContext | :DigestCertVerify+0xlal: Q ,a / slze- Q s-lg -
001b:748598ce 0fb606 MOVZE eax, byte ptr ]

1: kd> t

SizeJofimemcpy;l

schannel IC5=13T1lsServerConte rtVerifyv+0=xlab:

001b:748598d1 Of
1: kd> d [e=3

002cf299 00 30
002cf2a9 (O™ 77
002c£2b9 31 =2 28
002c£2c9 93 58 ed
002c£2d9 ab 31 a3
002cf2e9 03 01 00

002cf2f9 16 69 be
002c£309 £d 7 7b

| A

) C A 11‘; ("; yravyas 1 I\;
p 1IICtp.77 SOCCULITYSITT. COLTC XPIOT

—t]

-


http://www.securitysift.com/exploiting-ms14-066-cve-2014-6321-aka-winshock/

BERSERIK!

% A variant of Bleichenbacher attack on PKCS#1 v.1.5
(CVE-2006-4339)

Intel Security: Advanced Threat Research

BERserk Vulnerability

Part 1: RSA signature forgery attack due to incorrect parsing
of ASN.1 encoded Digestinfo in PKCS#1 v1.5

http://www.intelsecurity.com/advanced-threat-research/berserk.html



http://www.intelsecurity.com/advanced-threat-research/berserk.html

-l
P e

PARSER DI

FFERENT]

r

€ 'Iwo parsers, one message ...

.

ALS

two different parses!

& We’ve seen this before in:

% “Insertion, Evasion, and Denial of Service: Eluding
Network Intrusion Detection”, Ptacek & Newsham, 1998

¢ X.509 certs: “PKI layer cake”, Kaminsky, Sassaman,

Patterson, 2010




NIDS EVASION = PARSER
DIFES

% “Insertion, Evasion, and Denial of Service: Eluding Network
Intrusion Detection”, Ptacek, Newsham, 1998

% Also Vern Paxson et al, 1999, protocol normalization

. End-System P Network Monltor

Sees "ATTACK" . Sees "ATXTACK"
allr |t |/a |c| k| |allr||x||T |allc| K
_____ Arrival Order
Accepted by Monftor -
| 5 3 6 1 2 4
reeed [ [x| [r] [c] [a][a] [x] {CHTHKHAHTHA
- i T~ o> ‘

— . —

Attacker's Data Stream




UNDECIDABLE PARSER DIFFERENTIALS

¢ “PKI Layer Cake: New Collision Attacks Against the
Global X.509 Infrastructure”, Dan Kaminsky, Len
Sassaman, Meredith L. Patterson, 2010

% X.509 / ASN.1 parsers disagree on
. nondeterministic
what’s in a common name (CN) => context.froe

CA thinks it signs X, browser sees Y

% Checking equivalence of parsers

beyond deterministic context-free

languages is undecidable

] == j’]‘]



THE "UNDECIDABILITY CLIFE

IPv4 XML X.509
JSON IPv6 HTMLs




AN

http://www.saurik.com/id/17

JROID MASTER KEY: A PARSER

IFFERENTIAL

Verification Installation

Unzip

v

Install

Bad signature



http://www.saurik.com/id/17

AN

JROID MASTER KEY: A PARSER

IFFERENTIAL

% Android packages are signed & only installed if signature

checks out

% Java crypto verifier followed by C++ installer

A <
® Ct++

nas unsigned integers, Java doesn’t => different results of

unzi

DPINg

& Different contents “verified” vs installed

http://www.saurik.com/id/{17,18,19}



http://www.saurik.com/id/17

ANDROID MASTER KEY: A PARSER

IFFERENTIAL

% Initial fixes still kept two o~
different parsers context-free

% Recipe for disaster:
undecidable beyond
deterministic context free

languages

< Finally fixed right: the same parser used for both
verification & installation, not two difterent parsers






http://www.saurik.com/id/17

-l
P e

HT TP CHUNKED
ENCODING

% Eliminates the need for Content-Length header

% meant for cases where the size of HTTP response isn’t
known when response is started

% e.g., unknown number of records fetched from a database

Transfer-Encoding: chunked

A bunch of data broken up

c

i1nto chunks.




APACHE CVE-2002-3092

$offset (@offsets) {
$request;
$request =
$request
$request
$request
$request

“"GET / HTTP/1.1\r\n";

"Host: $target host:$target port\r\n";
“Transter-Encoding: CHUNKED\r\n";

Zch 9 g bk

"DEADBEEF "; 3= DEADBEEF
# large nop sled plus shellcode A bunch of data broken up

$request .= $shellcode . "“\r\n"; D
into chunks.
0

# these three bytes are for address alignment
$request .= "PAD";

# place the appropriate amount of padding
$request .= ("0" x $offset—>[0]);

# this is where ebx or esi points, make it jump over the return address
$request .= "XX" . "\xeb\x@4\xeb\x04";

# this is the return address
$request .= pack("V", $offset—>[1]);




APACHE CVE-2002-3092

$offset (@offsets) {
$request;
$request
$request
$request
$request
$request

“GET / HTTP/1. ’\f\n“'
"Host: $target_!

;;;;

n\ (’\'7“ -
"DEADB

# large nop sled plus shellcode

$request .= $shellcode . “\r\n";

“Transfer—Encodlng LHUNKED\r\n“;

rget_port\r\n’;

48-—= DEADBEEF

A bunch of data broken up
D

into chunks.
Q




APACHE CVE-2002-3092

1y $offset (@offsets) {
y $request;
$request =

ouf = 2 A L U 8 N L R BN 5 T e

"Host: $target host:$target port\r\n";
$request .= "Transfer-Encoding: CHUNKED\r\n";
$request .= "\r\n";

$request .= "DEADBEEF ; 49— DEADBEEF

-—— http_protocol.c.vuln Fri Jun 14 16:12:50 2002 n up
+++ http_protocol.c Fri Jun 14 16:13:47 2002
3@ -2171,7 +2171,7 @@

$request .

/* Otherwise, we are in the midst of reading a chunk of data x/

- len_to_read
+ len_to_read
remaining;

(r->remaining > bufsiz) ? bufsiz : r->remaining;
(r->remaining > (unsigned int)bufsiz) ? bufsiz : r—>

len_read = ap_bread(r->connection->client, buffer, len_to_read);
if (len_read <= 0) {




@ =2171,7 +

/* 0the
- len_to_
+ len_to_
remaining;

len_rea

if (len

" data x/

)laining;
ufsiz : r—>

to_read);




FAST FORWARD 11
YEARS...

¢ Nginx is found to have an exact same issue!

-—- src/http/ngx_http_parse.c
+++ src/http/ngx_http_parse.c
@@ -2209,6 +2209,10 @@ data:

}

if (ctx->size < @ || ctx->length < 0) {
goto invalid;
}

+ + + +

return rc;

done:




case sw_chunk start:

if (ch >= '0' && ch <= '9") {
state = sw _chunk size;

ctx->size =
break:

}

ch - '"0';

c = (u_char) (ch | 0x20);

if (c >= 'a' &&

c <= "£')

state = sw chunk size;

ctx->size =
break:

}

goto invalid;

case sw _chunk size:

c - 'a' + 10;

if (ch >= '0' && ch <= '9") {

ctx->size =
break:

}

ctx->size * 16 + (ch - '0');

c = (u_char) (ch | 0x20);

if (¢ >= 'a' &&
ctx->size =
break:

c <= "f") {
ctx->size * 16 + (c - 'a' + 10);

q




data:

ctx->state = state;
b->pos = pos;

switch (state) {

case sw_chunk start:
ctx->length = 3 /* "0" LF LF */;
break;

case sw_chunk size:
ctx->length = 1 /* LF *»/

+ (ctx->size ? ctx->size + 4 /* LF "0" LF LF */
s 1 /* LF */);

break;

case sw_chunk extension:

case sSw_ chunk extension almost done:
ctx->length =1 /* LF »/ + ctx->size + 4 /* LF "0" LF LF */;
break;

case sw_chunk data:
ctx->length = ctx->size + 4 /* LF "0" LF LF */;
break;

case sSw__ after data:

case sw_after data almost done:
ctx->length = 4 /* LF "0" LF LF */;
break;

case sw last chunk extension:

case sSw_ last chunk extension almost done:
ctx->length = 2 /* LF LF */;
break;

case sw_trailer:

case sw_trailer almost_done:
ctx->length = 1 /* LF *»/;
break;

case sSw traller header:

case Ssw_ traller header almost done:
ctx->length =2 /* LF LF "/'
break;

if (ctx->size < 0 || ctx->length < 0)

goto invalid;
}




STATE MACHINE DOINI
WRONG (AGAIIN)

L4

¢ ngx_http_parse.c:

% 57 switch statements
% 272 single-char case clauses

% 2300+ SLOC

% States and inputs for all grammar elements all mixed
together, unintelligible

¢ Parser combinator style would have exposed the issue
immediately; not 10+ years after the same bug in Apache




¢ ngx_http_

% 57 switch
% 272 singl
% 2300+ SL

% States and i
together, u

e 1Ssue

in Apache




FOR DESERT:
SHELLSHOCK!

¢ system(“your command here”) actually

means
parse_and_execute( ENV strings )

“Bash really is a local app that woke up one morning

on the HMS CGI-BIN with a pounding headache”

<+ Computation power exposed to external inputs is
computation power given to attacker




FOR DESE

~
o

R]

. O

SHELLSHOCK!

"W focnzm;mncn\

JAAPA
JH03bIOM |

-



L4

WHAT FUTURE HOLDS

O UPSTANDING HACKERS WHO WE ARE / WHAT WE DO / PROJECTS / ENGAGEMENTS / PRESS /

CONTACT @ @ @

—1 >C cD

HAMMER TONGS SECURE CODING TOOLKIT

— VIEW > VIEW > VIEW)> —




% Valid or expected inputs are a language & must be so treated

% Patch to Postel’s principle: “[For security of your usersl,
be definite about what you accept!”

¢ If you hand-program your parser, the grammar it expects/
accepts must be clear from the code.

¢ Hammer, a parser-combinator style kit for C/C++, Java,
Python, .Net, Ruby; ...
https://github.com/UpstandingHackers/hammer
(Meredith L. Patterson et al)




PARSER CONSTRUCTION

Untrusted input streams Well-typed objects
Grammar i
- |

Recognizer ll
for input

language

Reject ‘

invalid i . .

T x ~ Accept valid/expected inputs,
P call semantic actions

Processing:
malloc()
memcopy()

+) *1 W, /1




=F

PARSER-COMBINATOR STYLE:
PARSERS ALL THE WAY DOWN

\
\

LR

sync.16 | length 8 | linkControl 8 | targetAddress.16 | sourceAddress.16 | headerCRC.16 | transportFrame
J— <
transportControl.8 | apduSegment.128 | segCRC.16 apduSegment.8-128 | segCRC.16
/

//

applicationProtocolDataUnit (APDU)

e e e

B e e S

applicationProtocolControllnfo (APCI)

applicationServiceDataUnit (ASDU)

o

—_ .

/ ” / \\\\
request | applicationContol.8 | functionCode.8 ; & Y
response | applicationContol.8 | functionCode. 8 intcmallnfo.lﬂ objTvpe.8 | variation.8 | indexSize 4 | qualifier.4 | applicationData

{ A
[
3
L‘»L—




MAKE THE GRAMMAR THAT PARSER ACCEPTS
CLEAR FROM THE CODE!

05 64 14 F3 start = h token (“\x05\x64");

01 00 00 04 _ . . :
P o len = h i1int range(h uint8(), 5, 2595);

01 3c 02 06 ctrl = h uint8();

3C 03 06 3C : !
el det e Lhuintle(O

06 9A 12 siael = e deie | eemieie (e TaneE s (), U, ©33519) ¢
I mamiE LS () 5

i arer bool (I sequence (hf oS ESTEN

crc
hdr

len, ctrl, dst, src, cre, NULL),
validate crc);
= 1oy 2iciEis Hoeiadl (ol JERlEnEE |/ o

ol eeieatienichll (Eieshasigonst  FieainG )

lol (=iste e RS INIBAIIGE - vellliaicleiee. Lem,) £




.«
~—tth

AUDITING WITH LANGSEC

% Practical rules for input-language decisions: which to choose?

¢ JSON vs. XML vs. ASN.1 CVEs:
¢ DER vs. BER XML JSON
% Auditing of input-handling code 635 g
(170 XXE) ?

© “Where is your recognizer?”

% “Do you really need recursive nesting syntax/ cross-layer
context dependency/ cross-object dependency?




“ou WANT PROOF? 'L GIVE. You PROOE !




~—fP
|

An Axiomatic Basis for
Computer Programming

C. A. R. Hoare
The Queen’s University of Belfast,* Northern Ireland

In this paper an attempt is made to explore the logical founda-
tions of computer programming by use of techniques which
were first applied in the study of geometry and have later
been extended to other branches of mathematics. This in-
volves the elucidation of sets of axioms and rules of inference

which can be used in proofs of the properties of computer

programs. Examples are given of such axioms and rules, and
a formal proof of a simple theorem is displayed. Finally, it is
argued that important advantages, both theoretical and prac-
tical, may follow from a pursuance of these topics.

KEY WORDS AND PHRASES: aoxiomatic method, theory of programming’
proofs of programs, formal language definition, programming longuage

design, machine-independent programming, program documentation
CR CATEGORY: 4.0, 4,21, 4.22, 5.20, 5.21, 5.23, 5.24

Volume 12 / Number 10 / October, 1969 _
Communications of the ACM

AB OVO

% Proving correctness of

<

L (X) 4

)4

programs deductively,
from axioms

“..axioms ofter a simple
and flexible technique for
leaving certain aspects of
a language undefined ...
[which is} absolutely
essential for
standardization purposes.”




C.A.R., HOARE, 1968..

Thus the practice of proving programs would seem to
lead to solution of three of the most pressing problems in
software and programming, namely, reliability, documen-
tation, and compatibility. However, program proving, cer-
tainly at present, will be difficult even for programmers of
high caliber; and may be applicable only to quite simple
program designs. As in other areas, reliability can be pur-
chased only at the price of simplicity.




An Axiomatic Basis for

Computer Programming Lj { @ } I{

C. A. R. HoARE 1969

P{Q} R

Precondition Code Result

D1 Rules of Consequence

If P{QIRand R D Sthen P{Q}S
If P{QIRand S D Pthen S{QIR

D2 Rule of Composition
If P{Qde and Rl{Q’,R then P{ (Qx; Qz)’R




ENTER WEIRD
MACHINES

Assume Q is proven correct, P{ Q } R

If P isn’t quite right, what will { Q } do to R?

= Q}Rﬁ




ENTER WEIRD
MACHINES

Assume Q is proven correct, P{ Q } R

If P isn’t quite right, what will { Q } do to R?

What can we make (Q compute
by varying inputs it wasn’t verified for?




A

35 TRAC

TON VS COMPOSITION

D2 Rule of Composition

If  P{Qi}R;

and Ry{Q:}R then P{(Qi; QIR

% So you put together { Q1 ; Q2 }. How many programs did

you actually create?

Instruction Q3 Instruction Q4




L "ﬁ

Coq: The world’s best macro assembler?

Andrew Kennedy Nick Benton

Microsoft Research

Jonas B. Jensen

Pierre-Evariste Dagand

ITU Copenhagen University of Strathclyde

Definition call_cdecld f argl arg2 argd :=
PUSH arg3;; PUSH arg2;; PUSH argl;;
CALL £f;; ADD ESP, 12.

Definition main (printfSlot: DWORD) :=
(* Argument in EBX %)
letproc fact :=
MOV EAX, 1;;
MOV ECX, 1;;
(* while ECX <= EBX »)
while (CMP ECX, EBX) CC_LE true (
MUL ECX;; (* Multiply EAX by ECX *)
INC ECX
)
in
LOCAL format;
MOV EBX, 10;; callproc fact;;
MOV EDI, printfSlot;;
call_cdecl3 [EDI] format EBX EAX;;
MOV EBX, 12;; callproc fact;;
MOV EDI, printfSlot;;
call_cdecl3 [EDI] format EBX EAX;;
RET 0;;
format:;;
ds "Factorial of %d is J%d";; db #10;; db #0.

Compute bytesToHex
(assemble #x"C0000004" (main #x"CO00Q0000")).

% Coq, the proot assistant
than can do induction

proofs in [N

$ Bit-level models of x86
instructions + mnemonics

% Verified assembly language

¢ Also, see Ironclad,
Hawblitzel et al., OSDI’'14




,,,,,,

EXPLOITATION IS

VERIFICATION

BY THANASSIS AVGERINOS, SANG KIL CHA, ALEXANDRE REBERT,
EDWARD J. SCHWARTZ, MAVERICK WOO, AND DAVID BRUMLEY

Automatic
Exploit
Generation

AEG is far from being solved. Scalabil-
ity will always be an open and inter-
esting problem. As of February 2013,
AEG tools typically scale to finding
buffer overflow exploits in programs
the size of common Linux utilities.

COMMUNICATIONS OF THE ACM FEBRUARY 2014 VOL.57  NO.2

Our research team and others cast
AEG as a program-verification task
but with a twist (see the sidebar “His-
tory of AEG"). Traditional verification
takes a program and a specification of
safety as inputs and verifies the pro-
gram satisfies the safety specification.
The twist is we replace typical safety
properties with an “exploitability”

property, and the “verification” pro-
cess becomes one of finding a pro-

ram path where the exploitability
m%m
fication framework ensures AEG tech-
niques are based on a firm theoretic
foundation. The verification-based
approach guarantees sound analysis,
and automatically generating an ex-

ploit provides proof that the reported
bug is security-critical.




‘HOUSTON, WE HAVE A
PROBLEM”

(P

¢ Wassenaar Arrangement (Dec. 2013) defines “ntrusion

software”
.. The modification of the standard execution path
of a pr Igfram or grocess in order to allow the execution of
externally provided instructions...”

& Controls means of generatmg, developing, operating
“intrusion software”

% Inputs become regulated arms?

¢ More in our “Information Security War Room”
invited talk with FX at USENIX Security 2014




[ ARMS DEALER )

\%

Image credit: FX




RECOMMENDATIONS

% Specity your valid & expected input with a grammar
¢ Keep the input language as simple as possible

% If you hand-write the parser, make sure the grammar is
obvious from code

% Use parser combinator style! (e.g., Hammer)
¢ Don’t mix semantic actions with syntax recognition!
¢ “Full recognition before processing”

% Careful with memcapy, etc. before input is fully validated!




% Trustworthiness must at least include constraining

& isolating emergent computation (“weird
machines”)

¢ Co-design data formats & their parsing code to
have least complexity, to make verification tractable

% The only way to avoid complexity clift




r

LANGSEC V]

A

L4

\
~—d

Common Weakness ‘ - ParentOf O 107 Struts: Unused Validation Form 700
. C\S\\/RAF ParentOf 9 108 Struts: Unvalidated Action Form 700
Enumeration A - 1000
A Community-Developed Dictionary of Software Weakness Tipes ParentOf @ 109 Struts: validator Turned OFf Iggo
Presentation Fifter:| Mapping-Friendly . ParentOf ¥ 110 Struts: Validator Without Form Field 700
er Input Validation ParentOf @ 111 Direct Use of Unsafe JNI ggg
Weakness ID: 20 (weakness Class) 2009 CWE/SANS Top Q5 Status: Usable ParentOf 112 Missing XML Validation 699
(B} 700
D . 1000
escription Summary ParentOf 113 Improper Neutralization of CRLF 700
The product does not validate or incorrectly validates input that can (B] Sequences in HTTP Headers ('HTTP
affect the control flow or data flow of a program. Response Splitting'
L ParentOf 114 Pr ntrol 699
Extended Description =
Extended Description B) 700
When software does not validate input properly, an attacker is able to 1000
craft the input in a form that is not expected by the rest of the ParentOf @ 117 Improper Output Neutralization for Logs 700
application. This will lead to parts of the system receiving unintended ParentOf @ 119 Improper Restriction of Operations within 699
input, which may result in altered control flow, arbitrary control of a the Bounds of a Memory Buffer 700
resource. or arbitrary code execution ParentOf e 120 Buffer Copy without Checking Size of 700
ParentOf @ 15 External Control of System or 700 Input (‘Classic Buffer Overflow')
Configuration Setting ParentOf @ 129 Improper Validation of Array Index 699
ParentOf 21 Pathname Traversal and Equivalence 699 = 1000
Errors = .
ParentOf 73 External Control of File Name or Path 699 ParentOf o 134 | Uncontrolied FormaF Strjmq 700
1T —== DarantOf ® 170 Improper Null Termination 700
ParentOf 77 Improper Neutralization of Special B) 190 Integer Overflow or Wraparound 700
9 Elements used ina Command 2010/2011 CWE/SANS Top 25 @ 466 Return of Pointer Value Outside of 700
ParentOf Improper Neutralization of Input During 700 Expected Range
| @ Web Page Generation ('Cross-site ParentOf 470 Use of Externally-Controlled Input to 699
i Scripting") (B} Select Classes or Code ('Unsafe 700
! ParentOf Improper Neutralization of Special 700 Reflection')
| ° E,Emf;‘fe"c’fi‘i,'" an SOL Command ParentOf O 554 ASP.NET Misconfiguration: Not Using 699
('SQL Injection') R
i\ ParentOf - 700 Input Validation Framework 1000
= ('Resource Injection') ParentOf 9 601 URL Redirection to Untrusted Site (‘Open 699
| ParentOf 100 Technology-Specific Input Validation 699 Redirect')
. Evoblems ParentOf . 606 Unchecked Input for Loop Condition 699
‘ ParentOf [V 102 Struts: Duplicate Validation Forms 700 @ 1000
| ParentOf 103 Struts: Incomplete validate() Method 700 i i i
| o Definition ParentOf 9 622 Improper Validation of Function Hook 699
| ParentOf 9 104 Struts: Form Bean Does Not Extend 700 Arguments 1000
\ Validation Class ParentOf 626 Null Byte Interaction Error (Poison Null 699
i ParentOf 9 105 Struts: Form Field Without Validator Zggo V] B\ :te) 1000
|
| ParentOf O 106 Struts: Plug-in Framework not in Use 700 ParentOf ©© 680 Integer Overflow to Buffer Overflow 1000
| 1000 ParentOf oo 690 Unchecked Return Value to NULL Pointer 1000
‘ Dereference
ParentOf oo 692 Incomplete Blacklist to Cross-Site 1000
Scripting
ParentOf o 781 Impr r Addr Vali ion in IOCTL 699
with METHOD NEITHER I/O Control Code 1000
ParentOf o 785 Use of Path Manipulation Function 699
without Maximum-sized Buffer 700
{ ParentOf ¥ 789 Uncontrolled Memory Allocation 1000 )
1 _— mmmmmm m m_ _ _ N |
1k ‘
- —t




Brief Listing of the Top 25

The Top 25 is organized into three high-level categories that contain multiple CWE

entries.

Insecure Interaction Between Components

These weaknesses are related to insecure ways in which data

between separate components, modules, programs, processes, threads, or systems.

CWE-20: Improper Input Validation

geof Output

. CWE-89: Fail

re to Preserve SOl Querv Structure ("SOL Iniection")

Large classes of
weaknesses...

is sent and received

2009 CWE/SANS Top 25

CWE-79: Fail
CWE-78: Img
('OS Commai
. CWE-319: Cl
. CWE-352: Cr
CWE-362: R3

Insecure Interaction Between Components

These weaknesses are related to insecure ways in which data is sent and received between separate
components, modules, programs, processes, threads, or systems.

For each weakness, its ranking in the general list is provided in square brackets.

2010 CWE/SANS Top 25

CWE-209: Er

Rank |CWE ID

Scripting')

Improper Neutralization of Input During Web Page Generation ('Cross-site

Name

Improper Neutralization of Special Elements used in an SQL Command ('SQL
Injection’)

2011 CWE/SANS Top 25
(and still current)

..are failures
of recognition!

These weaknesses are related to insecure ways in which data is sent and received between separate

[4] |CWE-352 [Cross-Site Request Forgery (CSRF)
8] |CWE-434 |Unrestricted Upload of Fi -
R Insecure Interaction Between Components

9] |cwe-78 Improper Neutralization ¢

— |Command Injection’)
[17] |CWE-209 |[Information Exposure Th{ components, modules, programs, processes, threads, or systems.
‘[23] |M URL Redirection to Untruy  For each weakness, its ranking in the general list is provided in square brackets.
[25] [CWE-362 |Race Condition

Rank/cWerp| = Name

(1] Improper Neutralization of Special Elements used in an SQL Command ('SQL
Injection')

CWE-89

Improper Neutralization of Special Elements used in an OS Command ('OS

Command Injection')

Improper Neutralization of Input During Web Page Generation ('Cross-site
Scripting')

CWE-434 |Unrestricted Upload of File with Dangerous Type
|[12] |CWE-352 |Cross-Site Request Forgery (CSRF)
’[22] ’CWE-601 ’URL Redirection to Untrusted Site (‘Open Redirect’)




,,,,,,,

LANGSEC WORKSHOP
2015

% Second year of the LangSec workshop at the
IEEE Security & Privacy Symposium

¢ http://spwis.langsec.org/ -- Thu May 21, 2015




