Recent IPv6 Security Standardization Efforts

Fernando Gont

Agenda

- Motivation for this presentation
- Part I: Protocol Issues
 - IPv6 Addressing
 - IPv6 Fragmentation & Reassembly
 - IPv6 Neighbor Discovery
 - IPv6 Extension Headers

Agenda (II)

- Part II: Opearational Issues
 - IPv6 First Hop Security
 - IPv6 Firewalling
 - IPv6 Implications on IPv4 Networks
 - Using link-locals (only) on network infrastructure
 - Operational advice for IPv6 security
- Conclusions
- Questions and Answers

Motivation for this presentation

IPv6 Security Summit, Troopers 14 Heidelberg, Germany. March 17-18, 2014

Motivation

- TCP & IPv4 were introduced in the early '80's
- Yet in the late '90s (and later!) we were still addressing security issues
 - SYN flood attacks
 - Predictable TCP Initial Sequence Numbers (ISNs)
 - Predictable transport protocol ephemeral port numbers
 - IPv4 source routing
 - etc.
- Mitigations typically researched **after** exploitation
- Patches applied on production systems

Motivation (II)

• We hope to produce an alternative future for IPv6

IPv6 Security Summit, Troopers 14 Heidelberg, Germany. March 17-18, 2014

My personal rant

• Why we should improve IPv6?

-> Because it is the right thing to do!

- Better standards typically relate in better implementations
- The later the you fix problems, the more expensive it gets
- Lessons from the OpenBSD Project:
 - Pro-active security
 - "Shut Up & Hack!"

IPv6 Standardizaton Efforts Part I: Protocol Issues

IPv6 Addressing Brief overview

IPv6 Security Summit, Troopers 14 Heidelberg, Germany. March 17-18, 2014

IPv6 unicast addresses

- Global unicast
 - Meant for communication on the public Internet
- Link-local unicast
 - Meant for communication within a network link/segment
- Site-local unicast
 - Deprecated (were meant to be valid only within a site)
- Unique Local unicast
 - Are expected to be globally unique, but not routable on the public Internet

IPv6 Global Unicast Addresses

n bits	m bits	128-n-m bits
Global Routing Prefix	Subnet ID	Interface ID

- A number of possibilities for generating the Interface ID:
 - Embed the MAC address (traditional SLAAC)
 - Embed the IPv4 address (e.g. 2001:db8::192.168.1.1)
 - Low-byte (e.g. 2001:db8::1, 2001:db8::2, etc.)
 - Wordy (e.g. 2001:db8::dead:beef)
 - According to a transition/co-existence technology (6to4, etc.)
 - Random and constant (MS Windows)
 - Random and temporary (RFC 4941)

IPv6 Global Unicast Addresses (II)

- MAC-derived Interface ID's are constructed as follows:
 - Flip the U/L bit of the OUI (bit 1 of the most significant byte)
 - Insert the word "0xfffe" in between the upper and lower 24-bits
- The IID is typically:
 - Unique
 - Constant (stable across networks)

IPv6 Addressing Overview of Security Implications

IPv6 Security Summit, Troopers 14 Heidelberg, Germany. March 17-18, 2014

 $\ensuremath{\mathbb{C}}$ 2014 SI6 Networks. All rights reserved

Security Implications of IPv6 Addressing

- Correlation of network activity over time
- Correlation of network activity across networks
- Network reconnaissance
- Device specific attacks

IPv6 Addressing Network Activity Correlation

IPv6 Security Summit, Troopers 14 Heidelberg, Germany. March 17-18, 2014

 $\ensuremath{\mathbb{C}}$ 2014 SI6 Networks. All rights reserved

Network Activity Correlation

- IPv6 IIDs are typically globally-unique, and stable
- Example:
 - Day #1: I see some activity from node 2001:db8:1::1111:22ff:fe33:4444
 - Day #2: I see some activity from node 2001:db8:1::1111:22ff:fe33:4444
 - The IID "1111:22ff:fe33:4444" leaks out host "identity"
 - Hence I can correlate the both network events
- Was this there for IPv4?
 - Not to the same extent
 - Small address space (and NAT!) led to address "collisions"

Mitigation for network activity correlation

- RFC 4941: privacy/temporary addresses
 - Random IIDs that change over time
 - Typically generated **in addition** to traditional SLAAC addresses
 - Traditional addresses used for server-like communications, temporary addresses for client-like communications
- Operational problems:
 - Difficult to manage!
- Security problems:
 - They mitigate host-tracking **only partially** (more on this later)
 - They **do not** mitigate host-scanning attacks

IPv6 Addressing Host Tracking

IPv6 Security Summit, Troopers 14 Heidelberg, Germany. March 17-18, 2014

Host-tracking attacks

- Traditional IIDs are constant for each interface
- As the host moves, the prefix changes, but the IID doesn't
 - the 64-bit IID results in a super-cookie!
- This introduces a problem not present in IPv4: host-tracking
- Example:
 - In net #1, host configures address: 2001:db8:1::1111:22ff:fe33:4444
 - In net #2, host configures address: 2001:db8:2::1111:22ff:fe33:4444
 - The IID "1111:22ff:fe33:4444" leaks out host "identity".

Mitigation for network activity correlation

- RFC 4941: privacy/temporary addresses
 - They mitigate host-tracking **only partially**: only passive tracking
 - An attacker can always probe the "stable" address

IPv6 Addressing Network Reconnaissance

IPv6 Security Summit, Troopers 14 Heidelberg, Germany. March 17-18, 2014

IPv6 host scanning attacks

"Thanks to the increased IPv6 address space, IPv6 host scanning attacks are unfeasible. Scanning a /64 would take 500.000.000 years"

– Urban legend

Is the search space for a /64 really 2⁶⁴ addresses?

Short answer: No! (see: draft-ietf-opsec-ipv6-host-scanning)

Our experiment

- Find "a considerable number of IPv6 nodes" for address analysis:
 - Alexa Top-1M sites + perl script + dig
 - World IPv6 Launch Day site + perl script + dig
- For each domain:
 - AAAA records
 - NS records -> AAAA records
 - MX records -> AAAA records
- What did we find?

IPv6 address distribution for the web

IPv6 Security Summit, Troopers 14 Heidelberg, Germany. March 17-18, 2014

IPv6 address distribution for MXs

IPv6 Security Summit, Troopers 14 Heidelberg, Germany. March 17-18, 2014

IPv6 address distribution for the DNS

Mat Ford's measurements

• Analysis of client IPv6 addresses from web-server log:

IPv6 Addressing Network Reconnaissance Remote Networks

IPv6 Security Summit, Troopers 14 Heidelberg, Germany. March 17-18, 2014

Introduction

- IPv6 changes the "Network Reconnaissance" game
- Brute force address scanning attacks undesirable (if at all possible)
- Security guys need to evolve in how they do net reconnaissance
 - Pentests/audits
 - Deliberate attacks
- Network reconnaissance support in security tools has been very poor

IPv6 addresses embedding IEEE IDs

- In practice, the search space is at most $\sim 2^{23}$ bits **feasible!**
- Example:
 - # scan6 -i eth0 -d fc00::/64 -K 'Dell Inc' -v

IPv6 addresses embedding IEEE IDs (II)

- Virtualization technologies present an interesting case
- Virtual Box employs OUI 08:00:27 (search space: ~2²³)
- VMWare ESX employs:
 - Automatic MACs: OUI 00:05:59, and next 16 bits copied from the low order 16 bits of the host's IPv4 address (search space: ~2⁸)
 - Manually-configured MACs:OUI 00:50:56 and the rest in the range 0x000000-0x3fffff (search space: ~2²²)
- Examples:
 - # scan6 -i eth0 -d fc00::/64 -V vbox
 - # scan6 -i eth0 -d fc00::/64 -V vmware -Q 10.10.0.0/8

IPv6 addresses embedding IPv4 addr.

- They simply embed an IPv4 address in the IID
- Two variants found in the wild:
 - 2000:db8::192.168.0.1 <- Embedded in 32 bits
 - 2000:db8::192:168:0:1 <- Embedde in 64 bits
- Search space: same as the IPv4 search space feasible!
- Examples:
 - # scan6 -i eth0 -d fc00::/64 -Q 10.10.0.0/8
 - # scan6 -i eth0 -d fc00::/64 -Q 10.10.0.0/8

IPv6 addresses embedding service ports

- They simply embed the service port the IID
- Two variants found in the wild:
 - 2001:db8::1:80 <- n:port
 - 2001:db8::80:1 <- port:n
- Additionally, the service port can be encoded in hex vs. dec
 - 2001:db8::80 vs. 2001:db8::50
- Search space: smaller than 2⁸ feasible!
- Example:
 - # scan6 -i eth0 -d fc00::/64 -g

IPv6 "low-byte" addresses

- The IID is set to all-zeros, "except for the last byte"
 - e.g.: 2000:db8::1
- Other variants have been found in the wild:
 - 2001:db8::n1:n2 <- where n1 is typically greater than n2
- Search space: usually 2⁸ or 2¹⁶ feasible!
- Example:
 - # scan6 -i eth0 -d fc00::/64 --tgt-low-byte

IPv6 Addressing Network Reconnaissance Local Networks

IPv6 Security Summit, Troopers 14 Heidelberg, Germany. March 17-18, 2014

Overview

- Leverage IPv6 all-nodes link-local multicast address
- Employ multiple probe types:
 - Normal multicasted ICMPv6 echo requests (don't work for Windows)
 - Unrecognized options of type 10xxxxxx
- Combine learned IIDs with known prefixes to learn all addresses
- Example:

```
# scan6 -i eth0 -L
```


IPv6 Addressing Network Reconnaissance Mitigations

IPv6 Security Summit, Troopers 14 Heidelberg, Germany. March 17-18, 2014

© 2014 SI6 Networks. All rights reserved

Industry mitigations for scanning attacks

- Microsoft replaced the MAC-address-based identifiers with (non-standard) randomized IIDs
 - Essentially RFC 4941, but they don't vary over time
- Certainly better than MAC-address-based IIDs, but still not "good enough"
- They mitigate host-scanning, but not host tracking (more on this later)

IPv6 Addressing Standardization Efforts

IPv6 Security Summit, Troopers 14 Heidelberg, Germany. March 17-18, 2014

© 2014 SI6 Networks. All rights reserved

Auto-configuration address/ID types

	Stable	Temporary
Predictable	IEEE ID-derived	None
Unpredictable	NONE	RFC 4941

- We lack stable privacy-enhanced IPv6 addresses (*)
 - Used to replace IEEE ID-derived addresses
 - Pretty much orthogonal to privacy addresses
 - Probably "good enough" in most cases even without RFC 4941

(*) Now called "Semantically Opaque Interface Identifiers"

IPv6 Security Summit, Troopers 14 Heidelberg, Germany. March 17-18, 2014

Stable privacy-enhanced addresses

• Generate Interface IDs as:

F(Prefix, Net_Iface, Network_ID, Secret_Key)

- Where:
 - F() is a PRF (e.g., a hash function)
 - Prefix SLAAC or link-local prefix
 - Net_Iface is some interface identifier
 - Network_ID could be e.g. the SSID of a wireless network
 - Secret_Key is unknown to the attacker (and randomly generated by default)

Stable privacy-enhanced addresses (II)

- As a host moves:
 - Prefix and Network_ID change from one network to another
 - But they remain constant within each network
 - F() varies across networks, but remains constant within each network
- This results in addresses that:
 - Are stable within the same subnet
 - Have different Interface-IDs when moving across networks
 - For the most part, they have "the best of both worlds"
- A Linux implementation is in the works

IETF work in this area

- draft-ietf-6man-ipv6-address-generation-privacy
 - Discusses the security implications of IPv6 addressing
- draft-ietf-6man-stable-privacy-addresses:
 - Specifies how to generate semantically-opaque addresses
 - Currently in the RFC-Editor queue
- draft-ietf-6man-default-iids
 - Notes that implementations should default to draft-ietf-6man-stableprivacy-addresses

IPv6 Fragmentation and Reassembly

IPv6 Security Summit, Troopers 14 Heidelberg, Germany. March 17-18, 2014

© 2014 SI6 Networks. All rights reserved

IPv6 fragmentation

- IPv6 fragmentation performed only by hosts (never by routers)
- Fragmentation support implemented in "Fragmentation Header"
- Fragmentation Header syntax:

8 bits		8 bits		13 bits	2b	1b
Next Header Reserved F		Fragment Offset	Res	Μ		
	Identification					

Fragment Identification

- Security Implications of predictable Fragment IDs well-known from the IPv4 world
 - idle-scanning, DoS attacks, data-injection, etc.
- Amount of fragmented traffic will probably increase as a result of:
 - Larger addresses
 - DNSSEC
- But no worries, since we learned the lesson from the IPv4 world... – right?

Fragment ID generation policies

Operating System	Algorithm
FreeBSD 9.0	Randomized
NetBSD 5.1	Randomized
OpenBSD-current	Randomized (based on SKIPJACK)
Linux 3.0.0-15	Predictable (GC init. to 0, incr. by +1)
Linux-current	Unpredictable (PDC init. to random value)
Solaris 10	Predictable (PDC, init. to 0)
Windows 7 Home Prem.	Predictable (GC, init. to 0, incr. by +2)

GC: Global Counter PDC: Per-Destination Counter

At least Solaris and Linux patched in response to our IETF I-D – more patches expected!

IPv6 Security Summit, Troopers 14 Heidelberg, Germany. March 17-18, 2014

Fixing predictable Fragment IDs

- draft-ietf-6man-predictable-fragment-id:
 - Discussed the security implications of predictable Fragment ID
 - Proposes a number of algorithms to generate the Fragment ID

IPv6 Fragment Reassembly

- Security implications of overlapping fragments well-known (think Ptacek & Newsham, etc,)
 - Nonsensical for IPv6, but originally allowed in the specs
 - Different implementations allowed them, with different results
- RFC 5722 updated the specs, forbidding overlapping fragments
- Most current implementations reflect the updated standard
- See http://blog.si6networks.com

IPv6 "atomic" fragments

- ICMPv6 PTB < 1280 triggers inclusion of a FH in all packets to that destination (not actual fragmentation)
- Result: IPv6 atomic fragments (Frag. Offset=0, More Frag.=0)

Atomic fragment

IPv6 Security Summit, Troopers 14 Heidelberg, Germany. March 17-18, 2014

Issues with IPv6 atomic fragments

- Some implementations mix "atomic fragments" with queued fragments
- Atomic fragments thus become subject of IPv6 fragmentation attacks
- How to leverage this issue:
 - Trigger atomic fragments with ICMPv6 PTB messages
 - Now perform IPv6 fragmentation-based attacks

Mitigating issues with atomic fragments

- RFC 6946 solves the problem
- Essentially,

"Do not mix atomic fragments with normal fragments"

Handling of IPv6 atomic fragments

Operating System	Atomic Frag. Support	Improved processing
FreeBSD 8.2	No	No
FreeBSD 9.0	Yes	No
Linux 3.0.0-15	Yes	No
NetBSD 5.1	Yes	No
NetBSD-current	No	Yes
OpenBSD-current	Yes	Yes
Solaris 11	Yes	Yes
Windows Vista (build 6000)	Yes	No
Windows 7 Home Premium	Yes	No

At least NetBSD and OpenBSD patched in response to RFC 6946 – more patches expected!

IPv6 Security Summit, Troopers 14 Heidelberg, Germany. March 17-18, 2014

IPv6 Extension Headers

IPv6 Security Summit, Troopers 14 Heidelberg, Germany. March 17-18, 2014

 $\ensuremath{\mathbb{C}}$ 2014 SI6 Networks. All rights reserved

Problem statement

- Originally, state-less IPv6 packet filtering was impossible:
 - The IPv6 header chain can span multiple fragments
 - This makes state-less firewalling impossible

NH=60 NH=60 NH=05 IP v6 Destination Options Dest. Options Header Header TCP	Original pack	et		
	NH=60 IPv6 Header	NH=60 Destination Options Header	NH=06 Dest. Options Header	TCP Segment

First fragment

NH=44	NH=60	NH=60
IP∨6	Fragment	Dest. Options
Header	Header	Header

Second fragment

NH=44	NH=60		NH=06		
IPv6	Fragment	D. Opt.	Dest. Options	TCP	
Header	Header	Hdr.	Header	Segment	

IPv6 Security Summit, Troopers 14 Heidelberg, Germany. March 17-18, 2014

First step away from "insanity"

- RFC 7112 fixes this problem:
 - The entire IPv6 header chain must be contained in the first fragment
 - i.e. packets with header chains that span more than one fragment may be blocked – don't send them!

Neighbor Discovery

IPv6 Security Summit, Troopers 14 Heidelberg, Germany. March 17-18, 2014

© 2014 SI6 Networks. All rights reserved

General recommendations on ND

- Most Neighbor Discovery implementations:
 - Fail to perform basic sanity checks
 - Fail to enforce "limits" of any kinds
- Sample result:
 - A remote IPv6 networks scan of your network may result in a DoS
- draft-ietf-opsec-nd-security:
 - Discusses ND-based vulnerabilities
 - Provides advice on ND implementation

ND and fragmentation

- Fundamental problem: complexity of traffic to be "processed at layer-2"
- Example:

Bringing "sanity" to ND traffic

- RFC 6980 forbids use of fragmentation with Neighbor Discovery
 - It makes ND monitoring feasible
 - Turns out this is vital for SEND (otherwise it could be DoS'ed with fragments)

IPv6 Standardizaton Efforts Part II: Operational Issues

IPv6 Security Summit, Troopers 14 Heidelberg, Germany. March 17-18, 2014

IPv6 First Hop Security

IPv6 Security Summit, Troopers 14 Heidelberg, Germany. March 17-18, 2014

 $\ensuremath{\mathbb{C}}$ 2014 SI6 Networks. All rights reserved

IPv6 First Hop Security

- Security mechanisms/policies employed/enforced at the first hop (local network)
- Fundamental problem: lack of feature-parity with IPv4
 - arpwatch-like Neighbor Discovery monitoring virtually impossible
 - DHCP-snooping-like RA blocking trivial to circumvent

RA-Guard

- Meant to block RA packets on "unauthorized" switch ports
- Existing implementations trivial to circumvent
- RFC 7113 contains:
 - Discussion of RA-Guard evasion techniques
 - Advice to filter RAs, while avoiding false positives
- Can only be evaded with overlapping fragments
 - But most current OSes forbid them
 - And anyway there's nothing we can do about this :-)

DHCPv6-Guard

- DHCPv6 version of RA-Guard :-)
- Specified in: draft-ietf-opsec-dhcpv6-shield

IPv6 firewalling

IPv6 Security Summit, Troopers 14 Heidelberg, Germany. March 17-18, 2014

© 2014 SI6 Networks. All rights reserved

So... what is a firewall

- Different vendors & people have different expectations
- That becomes evident when trying to purchase one
- draft-gont-opsec-ipv6-firewall-reqs
 - Our attempt to specify a set of desired features
 - Still drafty, but got a lot of feedback!

IPv6 implications on IPv4 networks

IPv6 Security Summit, Troopers 14 Heidelberg, Germany. March 17-18, 2014

 $\ensuremath{\mathbb{C}}$ 2014 SI6 Networks. All rights reserved

General issues

- Virtually all networks have at least partial support for IPv6:
 - The support native IPv6, and/or
 - Some transition/co-existence technologies
- Unless this is taken care of, IPv6 might be leveraged for malicious purposes:
 - Evade security controls
 - Exploit IPv6-specific vulnerabilities
 - Data leakages

General issues (II)

- RFC 7123 discusses addresses this topic
- Summary of mitigations:
 - Enforce proper security controls for IPv6
 - Perform packet-filtering if/where appropriate

VPN leakages

- Typical scenario:
 - You connect to an insecure network
 - You establish a VPN with your home/office
 - Your VPN software does not support IPv6
- Trivial to trigger a VPN leakage
 - Spoof RA's or DHCPv6-server packets, to set the recursive DNS server
 - Simply trigger IPv6 connectivity, such that dual-stacked hosts leak out
 - Even legitimate dual-stacked networks may trigger it
- draft-ietf-opsec-vpn-leakages:
 - Discusses this topic and possibly mitigations
 - Currently under IESG review

Using link-locals (only) for network insfrastructure

IPv6 Security Summit, Troopers 14 Heidelberg, Germany. March 17-18, 2014

© 2014 SI6 Networks. All rights reserved

Using link-locals (only)

- draft-ietf-opsec-lla-only discusses the use of link-locals (only) on network infrastructure
- Pro:
 - Some sort of isolation based on the address scope
- Con:
 - Troubleshooting becomes painful
 - Response to probe packets will be likely filtered

Operational Security Considerations for IPv6 Networks

IPv6 Security Summit, Troopers 14 Heidelberg, Germany. March 17-18, 2014

© 2014 SI6 Networks. All rights reserved

draft-ietf-opsec-v6

- Discusses IPv6 security from an operations point of view
- Covers:
 - IPv6 Addressing
 - Link-layer security
 - Control Plane security
 - Routing plane security
 - Logging/monitoring
 - Transition/co-existence technologies
- Must read!

Some conclusions

IPv6 Security Summit, Troopers 14 Heidelberg, Germany. March 17-18, 2014

 $\ensuremath{\mathbb{C}}$ 2014 SI6 Networks. All rights reserved

Some conclusions

- Many IPv4 vulnerabilities have been re-implemented in IPv6
 - We just didn't learn the lesson from IPv4, or,
 - Different people worked in IPv6 than in IPv4, or,
 - The specs could make implementation more straightforward, or,
 - All of the above? :-)
- Still lots of work to be done in IPv6 security
 - We all know that there is room for improvements
 - We need IPv6, and should work to improve it

Questions?

IPv6 Security Summit, Troopers 14 Heidelberg, Germany. March 17-18, 2014

 $\ensuremath{\mathbb{C}}$ 2014 SI6 Networks. All rights reserved

Thanks!

Fernando Gont

fgont@si6networks.com

IPv6 Hackers mailing-list

http://www.si6networks.com/community/

www.si6networks.com

IPv6 Security Summit, Troopers 14 Heidelberg, Germany. March 17-18, 2014

