Vulnerabilites in the SaaS era
SaaS as the new attack vector

www.adallom.com

= Noam Liran
— Researcher
— Developer

— Gamer

= Chief Software Architect of Adallom

= Former cyber team leader in the IDF

= This talk’s purpose:
— Demonstrate how Enterprises use SaaS
— Get you thinking about SaaS security

— Question the transparency of SaaS security

= How many of you use SaaS?

Vocabulary

= Cloud — marketing buzz word
= On-premise — “datacenters” in enterprises
= SaaS - Software as a Service

Google Apps (Gmail, Drive), Dropbox, Box, Office 365,
Salesforce, SuccessFactors, LivePerson, Jive

= PaaS - Platform as a Service
— Azure, Force.com, Heroku

= |aaS - Infrastructure as a Service

— Azure, Amazon EC?2
5184-4124-8632-9355-0866

SaaS crash course

= Story background — Enterprises
— The “old world” — on-premise networks
— Multiple on-premise services:
— IM & Mails
— CRM
— HR management
— Collaboration (file sharing)

— Very well-defined perimeter

Perimeters under company policy '

Internal

, FWs & Unified Threat Management

]
i Workstations

WAF

CRM ERP

IDS & IPS

Mail

DLP systems

HR Files

B

DMZ

Mail services

DB security systems

__Information Rights Management

’lllllllllllll‘

Enterprise users

= Several types of users:
— Regqular users (9-to-5, no home access)
— Power users (home access)

— Travelers (on-the-road access)

= Users need remote access to resources

— How to allow access AND keep things secure?

Enterprise users

= Solution depends on the specific sector

— Financial and medical institutions are the strictest
= Some allow external access to resources

— Sometimes coupled with 2-factor auth. (OTP)
= VPN clients and company policy enforcement

— Managed laptops

— VPN with enforcement of strict OS, AV, FW policies

Perimeters under company policy '

Internal

]
i Workstation

CRM ERP

Traveling
| Salesman

Al Gore’s
Internet

3 n
n n =
n n =
H R F ° | " ™% = EEEEEEEEEEEEEASEEEEEEEEENTP
lHes .
n
n
fffffffffffffffffffffffffffffi

DMZ VPN

Mail services

Mail

Troubles in paradise

= Security often stands in the way of work
— People work better with mobile access
— Multi-site deployment hell
— Slow response to new needs

= Ever increasing costs
— Skilled IT staff is expensive
— Hardware, licensing
— Disaster recovery

= You are as secure as your IT security skills.

Introducing Saas..

= All you need is a browser! IT staff’s dream..
= Predictable costs

— $ / user / month
= No scaling issues

— No need to buy more servers to support more users
= “Access anywhere” (+ predictable performance ww)
= Secure

— SaasS vendors invest a lot in infrastructure security

— End user security is a different story..

Nothing is without problems

= Datais out of your sight

— It's somewhere Iin the “cloud”. Where?

— What are the backup policies?

— How do | know if my data was accessed?
= Availability

— Helplessness during technical issues
= Privacy issues

— Some countries (mostly European) have tough

restrictions on data residency

New security challenges

= Access data anywhere

— Any location

— Any computer

— Any operating system

— Any browser

— Any AV (if any)
= Auditing logs — at the discretion of the SaaS vendor
= Effectively a new (and broad) attack vector.

= Alerts? SIEM?

Type | AttaCk . * APT against the SaaS provider

e Physical security

| nfra NedUlenllgal | « Data center security
¢ Side-Channel Attack

layer .
y Pbos Saas

provider
responsibility

Type |l ANHiz[0]4 " « Web vulnerabilities (e.g. XSS)
_ App“Cation e SQL injection

e Authentication bypass
Iaye I e Configuration error vulnerabilities

e Credential theft Enterprise

Type ANzl /¢ | ° Data harvesting responsibility

e Exfiltration
— End user e Data alteration

e Defamation

Targeted attack — on-premise

Break-in

Latch-on

Expand

Gather

Exfiltrate

Spear phishing and remote
exploits to gain access

Malware and backdoors
installed to establish a foothold

Reconnaissance and
lateral movement to increase
access and maintain a presence

Acquisition and aggregation
of confidential data

Data exfiltration to
external networks

Targeted attack - SaaS

LT %’ Spear phishing and remote
D= © Break-in s ey

exploits to gain access

* No need to latch-on, all you need is the right credential & internet access

* No need to expand or maintain a presence, direct Access to all
resources

v < ’ Acquisition and aggregation
. " 4 % Gather of confidential data
Tuxy

* No need to exfiltrate to external networks, attacker use its own computer

and network

Authentication in the Cloud

= Starting point: simple username & password
= What if | use 20 applications at Work?
— Single sign on

— User (de-)provisioning

SSO (IdP) providers
— Cloud: OneLogin, Okta
— On-premise: Microsoft ADFS, IBM Tivoli, HP IceWall

Protocol war for SSO

— SAML 2.0 emerged victorious (unless you ask MS)

SAML 101

= Security Assertion Markup Language 2.0
— Celebrated its 9" birthday last week!

» Used to exchange claims (assertions) about a

user’s identity in signed XMLSs.
* |nstead of presenting a password:

— You presents a claim signed by a trusted IdP.
= SAML or similar protocols are used:

— Between SaaS applications

— Within(!) SaaS applications

SAML flow

= Three parties to every authentication:
— Service Provider — the consumer of claims.
— Browser

— |dentity Provider (IdP) — the producer of claims.

= The browser is pimped around by the SP and IdP.

SAML flow

Security Assertion Markup Language 2.0

Authorization Server / IdP

Resource Server Client
(Web Browser)
User accesses URL in app
<4
App generates
th t
ath reques HTTP POST to AS w/ Auth Request _
m Auth request is
o passed, verified
User is sent to login page at AS
E User logs in

Redirect to app w/ SAML token
m SAML token
is generated

User is logged in to resource server

CE >

A potential Achilles heel

Really difficult to implement right

— You can take advantage of _some __libraries
= No mainstream/standard implementation
— Shibboleth is closest to that, but it's far from popular
— Everybody’s winging it
= Many different implementations
— Compatiblility issues

— Very few “eyes” (like us) tried to find bugs

Lots of bugs that are waiting to be discovered

High-profile vulnerabilities

= Facebook remote code execution (due to SSO bug!)
— And why defaults are important

= The Enemy Within (currently in responsible

disclosure)
— And the border between customization and security
= |ce Dagger — MS13-104

— Embarrassing Office 365 token theft bug

Facebook OpenID RCE vuln.

= Found by Reginaldo Silva in November 2013.
— Facebook’s highest bounty: $33.5k
= Optional “forgot password” flow:
— Use Google account to prove ownership
— Works using OpenlD
= Facebook is using libxml to process these XMLs

— Default settings permit XML External Entity

Facebook — cont’'d

= Basically, you get to open local files and conns.
= The fix? Simply add:

— Tibxm1_disable_entity_Tloader(true);

The truth?
— These things are quite common.

— Default values aren’t always secure.

= Our example: libxmlsec

— Requires user to explicitly disable the option to

specify custom certificate during XML sig. check

The Enemy Within

= A vulnerability in one of the Top 10 SaaS apps.
= Currently in responsible disclosure.

» Takes advantage of the paradigm that SaaS apps

consider their own domains to be trusted.

= But what happens when users are able to upload

custom files or even customize JS?

= Easy (and silent) drive-by theft of token & cookies.

Office 365 token disclosure vuln.

= Nicknamed “Ice Dagger” — leaves no trace..
= Crafted HTTP response retrieves one’s O365 token
— “The keys” to Office 365 — Microsoft’s cloud platform
= Timeline:
— Found in the wild at one of our clients in April 2013
— Temporary fix for the client in place 2 days later
— Reported on May 2013
— Patched on December 2013

S ome b acC kg roun d 4100-8001-7932-5858-0520

= Our proxy processed an unusual HTTP request.
= Flagged by our heuristics engine due to two strikes:
— Destination host was a known TOR gateway

— The request was performed by Microsoft Word

Scheduled for in-depth review by Adallom Labs.

Our story begins.

Office 365 crash course

= Microsoft’s cloud offering for organizations
— Main competitor is Google Apps for Business
= Comprised of:
— Exchange Online (hosted email service)
— SharePoint Online (collaboration services)
— OneDrive Pro (file storage, formerly SkyDrive)
— Office 2013 desktop applications (Word and friends)

» These are very different products fused together

Office 2013 changes for the cloud

We’re going to talk mainly about Word

— But it's the same for PowerPoint, Excel, OneNote

Instead of serial numbers —you sign in to activate.

Must be signhed for SharePoint and OneDrive.

There’s a psychological campaign to sign you in:

? H - O X

Wfard

Ad d EF{EM"IEW WIEW

aabhCechr &g
You can g quomms | TH

B orf
& Sk

Moarm Liran =

Noam Liran

rioar i@

About me

Sccount settings

Swiitch account

.aanmicrosoft.cam

ments to the cloud.

Once you're signed in

= Word exchanges your credentials for a token
— It is then internally stored.

= When you try to access SharePoint or OneDrive
— Word trades its token for an authentication cookie

— The cookie has a short life span, the token has a

really long one

Back to our case

= We started tracing the request
— We got to the specific device
— Questioned the employee
— Reconstructed his actions with him
= The trigger: a spear fishing email
— Contained information relevant to his job.

= The link destination was a TOR gateway

— Using a TOR hidden service

Back to our case — cont’d

* The hidden service was no longer accessible
— Duh!

= The IP in the email was an anonymous proxy.

= No document to investigate

= No file hash to track

= We’re going to use Fiddler
— Web Debugging Proxy

— Avallable for free from http://www.telerik.com/fiddler

= We’re going to do it step-by-step

— Please — slow me down if something is unclear.

http://www.telerik.com/fiddler

Aftermath

= We managed to fully reproduce and develop a POC

= We contacted MSRC on the 29t of May with:
— Detalled research

— Working POC

= We begun our quest for a patch

Aftermath

* |t took over 6 months (!) for the patch to come out

— Bypassing MSFT's bullshit filters took a few weeks

— Reproduction took them a few weeks too.

— Even though we supplied a working PoC.
= Responsible disclosure — or irresponsible one?
— Users were vulnerable for a long period of time
— No pressure on the vendor to fix the issue

— Some companies could have protected themselves

Aftermath — cont’d

= Why was vulnerability classified as “Important”?

— According to MSFT it's because It does not result Iin

remote code execution”

= How are they be assessing SaasS vulnerabilities?

— Could it be using metrics from the Windows world?

What if | told you..

= That most of these vulnerabilities are fixed silently?
= That there’s no CVE/NVD for SaaS applications?
= That SaaS vendors are reluctant to have one?

— And to fix the reported ones

= [t’s our shared responsibility
— Insist on having a CVE for every disclosure
— Push for a unified disclosure mechanism for SaaS

— Insist and apply pressure for early patching

2790-9881-4832-5851-0613

THANK YOU

Questions?

