
You wouldn’t share a syringe.
Would you share a USB port?

Travis Goodspeed, Sergey Bratus
Thursday, April 25, 13

Thank you kindly

Searchio

Dmitry Nedospasov

Shout-out:
Andy Davis “50 Lessons learned from USB bugs”
http://www.nccgroup.com/en/blog/2013/01/lessons-learned-from-50-usb-bugs/

Thursday, April 25, 13

http://www.nccgroup.com/en/blog/2013/01/lessons-learned-from-50-usb-bugs/
http://www.nccgroup.com/en/blog/2013/01/lessons-learned-from-50-usb-bugs/

Wright’s Law

“Security doesn’t get better until tools for practical
exploration of the attack surface are made
available” - Joshua Wright

Thursday, April 25, 13

Which port is scarier?

Thursday, April 25, 13

“It’s all a network!”
Networks:

packets are routed based on data in them

have layers of abstraction (OSI)

we scan them for vulnerable endpoints

we inject crafted packets into them

Buses:

well... all of the above?

Thursday, April 25, 13

Which stack is higher?

Thursday, April 25, 13

Thursday, April 25, 13

More brittle stacks,
angrier packets

PACKET STACK

Thursday, April 25, 13

These birds are so
damn angry

 Angry birds glorify attackers!

 To improve cyber, we need
“Peaceful Pigs Building Solid Defensive
Structures”

 Those birds are so damn angry.

Thursday, April 25, 13

Not your tame TCP/IP birds...

Thursday, April 25, 13

NEXT DESC LENGTH

Thursday, April 25, 13

Guess the parser bug

ANDY
DAVIS

’50 BUGS’

Thursday, April 25, 13

What’s behind a USB port?

Thursday, April 25, 13

A lot
hangs
on these
wires

Mapping

A Lot Hangs On These Wires

Bratus, Goodspeed, Johnson, Smith, Speers (Universities of Somewhere and Elsewhere)Perimeter-Crossing Busses in USB WESS 2012 11 / 39
Thursday, April 25, 13

System programmer view

Mapping

A Lot Hangs On These Wires

Bratus, Goodspeed, Johnson, Smith, Speers (Universities of Somewhere and Elsewhere)Perimeter-Crossing Busses in USB WESS 2012 11 / 39

Thursday, April 25, 13

Port-side view

All kinds of subsystems
and drivers are
reachable from USB

“Sanity checks” are
haphazard; data is
trusted

“Go anywhere in the
kernel”

Thursday, April 25, 13

Through the port,
down the rabbit hole

Thursday, April 25, 13

Are you firewalling this?

More targets

Richer data structures

Looser code

Higher privilege (Kernel/Ring0 until recent userland
USB stacks)

Thursday, April 25, 13

“I see dead drivers”

1999, conforms to no
standards

Ubuntu includes drivers

“Works great with
Windows ME!”

Thursday, April 25, 13

Thursday, April 25, 13

“APT”

Thursday, April 25, 13

“APT”

Thursday, April 25, 13

“APT”

Thursday, April 25, 13

“APT”

Thursday, April 25, 13

Why aren’t we
firewalling that, again?
Payload delivered over USB can pick any target in
the kernel - it will pick & choose the loosest code

“Sloppy webcam 0.1” driver?

How easy it is to firewall all the
“bad” commands across SCSI, ATAPI, ...?

s/Application Firewalls/Driver Firewalls/g

...

Profit!
Thursday, April 25, 13

Mapping

An Attacker’s Mapping of Abstractions

Bratus, Goodspeed, Johnson, Smith, Speers (Universities of Somewhere and Elsewhere)Perimeter-Crossing Busses in USB WESS 2012 10 / 39

USB Ethernet Assumption Violation Attack Use

Transfer
One round-
trip, maybe
NAK-ed

Intended device will
reply to the transfer

Non-
compliant
controller

Hijack session,
change state
under the feet
of the host

Transaction

One set of
transfers, all
but the last
NAK-ed

Host controller complies
with the USB spec on
transactions

Hijack
session on
disconnect

Use of trusted
session context

Packet Packet
Fragment

Implicit length of
concatenated frames will
match explicit length of
transaction

Non-
compliant
device

Memory
corruption,
info leak

Controller Ethernet Card — — —

Bus D+/D- Pair

Electrically legal signals, but
in reality those widely
outside of spec are
accepted

Non-
compliant
controller

Damage frames
for session
hijack, jamming

Saturday, October 6, 12
Thursday, April 25, 13

Same-day prototype:

Thursday, April 25, 13

Custom PCB

Thursday, April 25, 13

...to

Thursday, April 25, 13

Facedancer 0.1

Thursday, April 25, 13

Let’s network them!

Thursday, April 25, 13

The Router/Injector/Facedancer

SPI BUS USB TO VICTIMFROM HOST,
RAW PACKET
(IN PYTHON) “SEND

BUFFER
NOW”

Thursday, April 25, 13

Maxim MAX3420E

Thursday, April 25, 13

Thursday, April 25, 13

Thursday, April 25, 13

Thursday, April 25, 13

USB glossary
Ports are called Endpoints. EP0 or the SETUP
endpoint is for auto-configuration (think a
“broadcast address” for setup)

Unconfigured devices respond to “broadcasts”,
send their Descriptors

This setup exchange is called Enumeration

Host assigns device number (~address on the bus)

Thursday, April 25, 13

On the wire with MAX3420

USB host acquires device descriptors (tables)

Looks up driver by device/vendor numbers

Sets up kernel “routing” through the stack layers

HOST -> DEV

DEV -> HOST

Thursday, April 25, 13

On the wire with MAX3420

NAKS, DEVICE MUST SEND
WHILE WORKING ON REPLY

TO HOST, OR ELSE HOST
DISCONNECTS;

LUCKILY, SENT BY MAX 3420
AUTOMAGICALLY

Thursday, April 25, 13

USB devices, in Python
Class types are standardized. (HID, Mass Storage)
Vendor types are not (e.g., FTDI, Wi-Fi).

Descriptors have structs unique to each device
class

Fairly complex: nested lengths, offsets
 => parser bugs

Be the host’s worst driver nightmare - in Python:
http://goodfet.sf.net/

Thursday, April 25, 13

http://goodfet.sf.net/facedancer
http://goodfet.sf.net/facedancer

Facedancer

“If you can write a webserver,
 you can write a disk”

 http://goodfet.sf.net/

Thursday, April 25, 13

http://goodfet.sf.net/facedancer
http://goodfet.sf.net/facedancer

“The Dark Side of Socks OS Code”

Descriptor structs are unique to each device class:
Nested lengths, in-struct offsets = trouble

Thursday, April 25, 13

Exploiting enumeration

Host requests the first few bytes of the descriptor.

Host mallocs that many bytes.

Host reads the entire descriptor into a temporary
buffer.

Host memcpy() the descriptor into the malloced
buffer.

PSGroove exploits this on the Playstation 3!

Thursday, April 25, 13

Exploit Dev Cycle
Before & After
1.Change your code.

2.Plug the dongle into
your workstation.

3.Reflash it.

4.Move the dongle to
your target.

5.Try it.

1. Change your code

2.Try it

Thursday, April 25, 13

HID Emulation

python goodfet.maxusbhid

Easiest to implement.

Lots of prior examples,

Social Engineering Toolkit

Teensy, AVR USB Key, vendor examples

Embarrassing bugs remain!

Thursday, April 25, 13

HID Format String
Ubuntu 12.04, Xorg

Manufacturer String:
“%n%s%n%s%n%s”

Device String:
“%n%s%n%s%n%s”

Thanks to the
ChromeOS team!

Thursday, April 25, 13

Thursday, April 25, 13

Skype crashes too

Thursday, April 25, 13

Host Mode Emulation

Roundtrip time becomes an issue. (Only on OS X)

Code is already in SVN, hardware coming in FD20.

Firmware security is even worse than in drivers!

Most exploits can use libusb instead of a
Facedancer.

Thursday, April 25, 13

Device Bugs

Memory exposed by reads past the end of the
Strings table.

Integer overflows, stack smashing, etc.

Never any ASLR; any DEP is accidental.

Thursday, April 25, 13

Device Firmware
Update (DFU)

Device Firmware Update Protocol

iPhone, iPod, and other MP3 players.

Handy attack target.

Facedancer supported.

Thursday, April 25, 13

Thursday, April 25, 13

Thursday, April 25, 13

Thursday, April 25, 13

Mass Storage

TOCTTOU Exploits

See Collin Mulliner’s at WOOT ’12.

Active Antiforensics

Disk erases itself if forensically analyzed.

Thursday, April 25, 13

Thursday, April 25, 13

USB Serial Emulation

Thursday, April 25, 13

USB Serial Emulation

All sorts of things appear as a serial port.

Uninterruptible Power Supplies

Modems, Phones, Radios

Facedancer!

Thursday, April 25, 13

Thursday, April 25, 13

Targets in Windows

Unmaintained drivers are gold.

Auto-installation approximates
Linux variety.

Variety, but not speed.

Windows 8 disables misbehaving
USB ports.

Thursday, April 25, 13

Targets in Linux

All drivers by default!

No loading delays!

Massive attack surface.

Thursday, April 25, 13

Targets in Mac

Holy crap the stack’s
performance is bad.

Can’t emulate HID on localhost!

Lack of driver variety can limit
attack surface.

Thursday, April 25, 13

Targets in FreeBSD

Complex drivers not included by default.

Wifi, etc.

Pay attention to usbpf.

See our paper from WESS 2012.

Instrumentation with dtrace.

Thursday, April 25, 13

Conclusions
USB opens a massive attack surface to inputs.

Network stack exploration methods also work for
USB stacks – similar “routing” structure to be
exploited.

We’ve begun to build tools to exploit this structure

“Magical” abstractions lead to unrealistic validity
assumptions ⇒ bugs, likely exploitable.

Other buses: you are next!
 (If Daisho doesn’t beat us to it)

Thursday, April 25, 13

“Layers of abstraction become
 boundaries of competence”

Thursday, April 25, 13

