
Legal And Efficient
Web App Testing

Without Permission

Abraham Aranguren
@7a_ @owtfp

abraham.aranguren@gmail.com
http://7-a.org

http://owtf.org

Agenda

• Intro

- Why + How without permission

- OWTF basics

• Practical Cheating:

- OWASP + OWTF Walk-through

• Conclusion

• Q&A

About me
• Spanish dude

• Uni: Degree, InfoSec research + honour mark

• IT: Since 2000, defensive sec as netadmin / developer

• (Offensive) InfoSec: Since 2007

• OSCP, CISSP, GWEB, CEH, MCSE, etc.

• Web App Sec and Dev/Architect

• Infosec consultant, blogger, OWTF, GIAC, BeEF

The pen testing problem

http://scottthong.wordpress.com

Attacker Tactics
From “Open Source Information Gathering” by Chris Gates, Brucon 2009

http://carnal0wnage.attackresearch.com/

Pentester disadvantage
Pentesters vs Bad guys
• Pentesters have time/scope constraints != Bad guys
• Pentesters have to write a report != Bad guys

Complexity is increasing
More complexity = more time needed to test properly

Customers are rarely willing to:
“Pay for enough / reasonable testing time“

A call for efficiency:
• We must find vulns faster
• We must be more efficient
• .. or bad guys will find the vulns, not us

Can we learn from history?

Has this

Huge disadvantage
problem been solved before?

Ancient “Top Attackers”
Individually outstanding due to:
• Artificial selection: Babies killed if “defective” (!)
• Military training (“Agoge”): Ages 7-18
• Final test: Survive in the countryside with only a knife
• Spartan Law: No retreat, No surrender (i.e. victory or death)

Globally outstanding due to solid tactic: “Hoplite phalanx”
• Shield wall + Spear points
• Frontally very strong + used successfully for centuries

http://scottthong.wordpress.com / http://en.wikipedia.org/wiki/Sparta

How would you beat them?

How could a room full of (sedentary? ☺☺☺☺) Geeks
beat a room full of Spartans?

Ok, more realistic scenario ☺☺☺☺:
• Your troops must fight the Spartans
• You have the same number of soldiers
• Your soldiers are not that great
• How can you WIN?

Ancient “Pentest Cheating”
Battle of Lechaeum: Spartans defeated by “lamers”!

Tactic “Cheating”:
• Don’t fight, thow things!: Javelins + bows = Athenians WON
• Phalanx weak against: “shooters”, cavalry, flank/back attacks

http://www.ancientgreekbattles.net / http://en.wikipedia.org/wiki/Phalanx_formation /
http://en.wikipedia.org/wiki/Battle_of_Lechaeum

Why not take this to the next level?

Why not legitimately?
• Shoot “before the battle” without permission
• Shoot while we analyse information in parallel
• Prepare more shootings without being noticed

A Pentester “cheating try”
Offensive (Web) Testing Framework = Multi-level “cheating” tactics

OWTF Chess-like approach

Kasparov against Deep Blue - http://www.robotikka.com

OWTF Plugin Groups

OWTF > Web: Aux Plugins

Metasploit-like automation for external tools, custom tests and more

OWTF “Cheating”: Talk Scope
At least 48.5% (32 out of 66) of the tests in the OWASP Testing guide can be
legally* performed at least partially without permission

* Except in Spain, where visiting a page can be illegal ☺
* This is only my interpretation and not that of my employer + might not apply to your country!

Classic Pentest Stages
1. Pre-engagement: No permission � “OWTF Cheat tactics” = Start here
2. Engagement: Permission � Official test start = Active Testing here

OWTF 101
Step 1- Run it

Pre-engagement safe CLI OWTF options without permission
o owtf.py –t passive http://target.com

o owtf.py –t semi_passive http://target.com  semi_passive + grep

o owtf.py –t quiet http://target.com  passive + semi_passive + grep

OWTF 101 (cont.)
Step 2- Human Analysis in parallel

Pentester all-out “cheating” via OWTF continuous reporting:
• Pentester works on the report interface
• Start human analysis from “minute 1”: No “waiting until X for scan to finish”
• Tools run in background via OWTF: No tool babysitting + No wasted energy
• Refresh report for newer results
• The human and the tools complement each other: “Fighting together as a team”

Context consideration:

Case 1 � robots.txt Not Found

…should Google index a site like this?

Or should robots.txt exist and be like this?

User-agent: *

Disallow: /

Case 1 � robots.txt Not Found - Semi passive
• Direct request for robots.txt
• Without visiting entries

Case 2 � robots.txt Found – Passive

• Indirect Stats, Downloaded txt file for review, “Open All in Tabs”

OWTF HTML Filter challenge: Embedding of untrusted third party HTML

Defence layers:

1) HTML Filter: Open source challenge

Filter 6 unchallenged since 04/02/2012, Can you hack it? ☺

http://blog.7-a.org/2012/01/embedding-untrusted-html-xss-challenge.html

2) HTML 5 sanboxed iframe

3) Storage in another directory = cannot access OWTF Review in localStorage

Start reporting!: Take your notes with fancy formatting

Step 1 – Click the “Edit” link

Step 2 – Start documenting findings + Ensure preview is ok

Start reporting!: Paste PoC screenshots

The magic bar ;) – Useful to generate the human report later

Step 1- Browse output files to review the full raw tool output:

Step 2 – Review tools run by the passive Search engine discovery plugin:

Was your favourite tool not run?
Tell OWTF to run your tools on: owtf_dir/profiles/resources/default.cfg (backup first!)

Passive Plugin

Tool output can also be reviewed via clicking through the OWTF report directly:

The Harvester:
•Emails
•Employee Names
•Subdomains
•Hostnames

http://www.edge-security.com/theHarvester.php

Metadata analysis:
• TODO: Integration with FOCA when CLI callable via wine (/cc @chemaalonso ☺)
• Implemented: Integration with Metagoofil

http://www.edge-security.com/metagoofil.php

Inbound proxy not stable yet but all this happens automatically:

• robots.txt entries added to “Potential URLs”

• URLs found by tools are scraped + added to “Potential URLs”

During Active testing (later):

• “Potential URLs” visited + added to “Verified URLs” + Transaction log

All HTTP transactions logged by target in transaction log

Step 1 – Click on “Transaction Log”

Step 2 – Review transaction entries

Step 3 – Review raw transaction information (if desired)

Step 1 - Make all direct OWTF requests go through Outbound Proxy:

Passes all entry points to the tactical fuzzer for analysis later

Step 2 - Entry points can then also be analysed via tactical fuzzer:

Manually verify request for fingerprint:

Goal: What is that server running?

Whatweb integration with non-aggresive parameter (semi passive detection):

https://github.com/urbanadventurer/WhatWeb

Fingerprint header analysis: Match stats

Convenient vulnerability search box (1 box per header found ☺):

Search All ���� Open all site searches in tabs

Exploit DB - http://www.exploit-db.com

NVD - http://web.nvd.nist.gov - CVSS Score = High

OSVDB - http://osvdb.org - CVSS Score = High

http://www.securityfocus.com - Better on Google

http://www.exploitsearch.net - All in one

Passive Fingerprint analysis

http://toolbar.netcraft.com - Passive banner grab,etc.

http://builtwith.com

•CMS
•Widgets
•Libraries
•etc

http://www.shodanhq.com/

Search in the headers without touching the site:

Passive suggestions
- Prepare your test in a terminal window to hit “Enter” on “permission minute 1”

What else can be done with a fingerprint?

Also check http://www.oldapps.com/, Google, etc.

Environment replication
Download it .. Sometimes from project page ☺

RIPS for PHP: http://rips-scanner.sourceforge.net/

Yasca for most other (also PHP): http://www.scovetta.com/yasca.html

Static Analyis, Fuzz, Try exploits, ..

http://www.robtex.com - Passive DNS Discovery

http://whois.domaintools.com

http://centralops.net

http://centralops.net

Has Google found error messages for you?

Check errors via Google Cache

https://www.ssllabs.com/ssldb/analyze.html

The link is generated with OWTF with that box ticked: Important!

https://www.ssllabs.com/ssldb/analyze.html

Pretty graphs to copy-paste to your OWTF report ☺

Do not forget about Strict-Transport-Security!

sslstrip chances decrease dramatically:

Only 1st time user visits the site!

Not found example:

Found example:

HTML content analysis: HTML Comments

Step 2 – Human Review of Unique matches

Efficient HTML content matches analysis

Step 1 - Click

Step 2 –Review Unique matches (click on links for sample match info)

Efficient HTML content matches analysis

Step 1 - Click

Want to see all? then click

HTML content analysis: CSS and JavaScript Comments (/* */)

HTML content analysis: Single line JavaScript Comments (//)

HTML content analysis: PHP source code

HTML content analysis: ASP source code

If you find an admin interface don’t forget to ..

Google for default passwords:

Disclaimer: Permission is required for this

http://centralops.net

Is the login page on “http” instead of “https”?

Pro Tip: When browsing the site manually ..

… look carefully at pop-ups like this:

Consider (i.e. prep the attack):

Firesheep: http://codebutler.github.com/firesheep/
SSLStrip: https://github.com/moxie0/sslstrip

Mario was going to report a bug to Mozilla and found another!

Abuse user/member public search functions:
• Search for “” (nothing) or “a”, then “b”, ..
• Download all the data using 1) + pagination (if any)
• Merge the results into a CSV-like format
• Import + save as a spreadsheet
• Show the spreadsheet to your customer

Analyse the username(s) they gave you to test:
• Username based on numbers?
USER12345

• Username based on public info? (i.e. names, surnames, ..)
name.surname

• Default CMS user/pass?

Part 1 – Remember Password: Autocomplete

<form action="/user/login"
method="post">

<input type="password" name="pass" />

Via 1) <form … autocomplete=“off”>

Or Via 2) <input … autocomplete=“off”>

BadGood

Manual verification for password autocomplete (i.e. for the customer)
Easy “your grandma can do it” test:
1. Login
2. Logout
3. Click the browser Back button twice*
4. Can you login again –without typing the login or password- by re-

sending the login form?

Can the user re-submit the login form via the back button?
* Until the login form submission

Other sensitive fields: Pentester manual verification
• Credit card fields
• Password hint fields
• Other

Manually look at the questions / fields in the password reset form
• Does it let you specify your email address?
• Is it based on public info? (name, surname, etc)
• Does it send an email to a potentially dead email address you can

register? (i.e. hotmail.com)

Part 2 - Password Reset forms

Goal: Is Caching of sensitive info allowed?

Manual verification steps: “your grandma can do it” ☺ (need login):
1. Login
2. Logout
3. Click the browser Back button
4. Do you see logged in content or a this page has expired error / the login

page?

Manual analysis tools:
• Commands: curl –i http://target.com
• Proxy: Burp, ZAP, WebScarab, etc
• Browser Plugins:

https://addons.mozilla.org/en-US/firefox/addon/live-http-headers/

https://addons.mozilla.org/en-US/firefox/addon/firebug/

HTTP/1.1 headers

Cache-control: privateCache-Control: no-cache

BadGood

HTTP/1.0 headers

Pragma: private

Expires: <way too far in the future>

Pragma: no-cache

Expires: <past date or illegal (e.g. 0)>

BadGood

BadGood

No caching headers = caching allowedhttps://accounts.google.com

HTTP/1.1 200 OK

Date: Tue, 09 Aug 2011 13:38:43 GMT

Server: ….

X-Powered-By: ….

Connection: close

Content-Type: text/html; charset=UTF-8

Cache-control: no-cache, no-store

Pragma: no-cache

Expires: Mon, 01-Jan-1990 00:00:00 GMT

The world

Repeat for Meta tags

<META HTTP-EQUIV="Cache-Control"
CONTENT=“private">

<META HTTP-EQUIV="Cache-Control"
CONTENT="no-cache">

BadGood

Step 1 – Find CAPTCHAs: Passive search

Offline Manual analysis:
• Download image and try to break it
• Are CAPTCHAs reused?
• Is a hash or token passed? (Good algorithm? Predictable?)
• Look for vulns on CAPTCHA version

CAPTCHA breaking tools
PWNtcha - captcha decoder - http://caca.zoy.org/wiki/PWNtcha
Captcha Breaker - http://churchturing.org/captcha-dist/

Manually Examine cookies for weaknesses offline

owaspuser:192.168.100.1:
a7656fafe94dae72b1e1487670148412

MTkyLjE2OC4xMDAuMTpvd2FzcHVzZ
XI6cGFzc3dvcmQ6MTU6NTg=

Decoded valueBase64 Encoding (!= Encryption ☺)

http://hackvertor.co.uk/public

http://hackvertor.co.uk/public

Lots of decode options, including:
• auto_decode
• auto_decode_repeat
• d_base64
• etc.

http://blog.taddong.com/2011/12/cookie-decoder-f5-big-ip.html

F5 BIG-IP Cookie decoder:

• Secure: not set= session cookie leaked= pwned
• HttpOnly: not set = cookies stealable via JS
• Domain: set properly
• Expires: set reasonably
• Path: set to the right /sub-application
• 1 session cookie that works is enough ..

Manually check when verifying credentials during pre-engagement:
Login and analyse the Session ID cookie (i.e. PHPSESSID)

Before: 10a966616e8ed63f7a9b741f80e65e3c

After: 10a966616e8ed63f7a9b741f80e65e3c

Before: 10a966616e8ed63f7a9b741f80e65e3c

After: Nao2mxgho6p9jisslen9v3t6o5f943h

Bad (normal + by default)Good

IMPORTANT: You can also set the session ID via JavaScript (i.e. XSS)

Session ID:
• In URL
• In POST
• In HTML

Example from the field:
http://target.com/xxx/xyz.function?session_num=7785

Look at unauthenticated cross-site requests:

http://other-site.com/user=3&report=4
Referer: site.com

Change ids in application: (ids you have permission for!)
http://site.com/view_doc=4

Headers Enabling/Disabling Client-Side XSS filters:
• X-XSS-Protection (IE-Only)
• X-Content-Security-Policy (FF >= 4.0 + Chrome >= 13)

Review JavaScript code on the page:

<script>
document.write("Site is at: " + document.location.href + ".");
</script>

Sometimes active testing possible in your browser
(no trip to server = not an attack = not logged):
http://target.com/...#vulnerable_param=xss

http://blog.mindedsecurity.com/2010/09/twitter-domxss-wrong-fix-and-something.html

Did Google find SQLi for you?

<!--#exec cmd="/bin/ls /" -->
<!--#INCLUDE VIRTUAL="/web.config"-->

1. Browse Site
2. Time requests
3. Get top X slowest requests
4. Slowest = Best DoS target

Google searches: inurl:wsdl site:example.com

Public services search:
http://seekda.com/
http://www.wsindex.org/
http://www.soapclient.com/

WSDL analysis
Sensitive methods in WSDL?
i.e. Download DB, Test DB, Get CC, etc.
http://www.example.com/ws/FindIP.asmx?WSDL

<wsdl:operation name="getCreditCard" parameterOrder="id">
<wsdl:input message="impl:getCreditCardRequest" name="getCreditCardRequest"/>
<wsdl:output message="impl:getCreditCardResponse" name="getCreditCardResponse"/>

</wsdl:operation>

Same Origin Policy (SOP) 101

http://www.ibm.com/developerworks/rational/library/09/rationalapplicationdeveloperportaltoolkit3/

1. Domain A’s page can send a request to Domain B’s page from Browser
2. BUT Domain A’s page cannot read Domain B’s page from Browser

No anti-CSRF tokenAnti-CSRF token present: Verify with permission

BadPotentially Good

• Request == Predictable � Pwned � “..can send a request to Domain B” (SOP)
CSRF Protection 101:
•Require long random token (99% hidden anti-CSRF token) � Not predictable
•Attacker cannot read the token from Domain B (SOP) � Domain B ignores request

Similar to CSRF:
Is there an anti-replay token in the request?

No anti-CSRF tokenAnti-CSRF token present: Verify with permission

BadPotentially Good

Some technologies allow settings that relax SOP:
• Adobe Flash (via policy file)
• Microsoft Silverlight (via policy file)
• HTML 5 Cross Origin Resource Sharing (via HTTP headers)
Cheating: Reading the policy file or HTTP headers != attack

http://www.adobe.com/devnet/flashplayer/articles/fplayer9_security.html

1) Passive search for Flash/Silverlight files + policies:

Silverlight file search:Flash file search:

Policy file retrieval for analysis

Flash: http://kb2.adobe.com/cps/403/kb403185.html

CSRF by design ���� read tokens = attacker WIN

<cross-domain-policy>

<allow-access-from domain="*"/>

</cross-domain-policy>

Bad defence example: restrict pushing headers accepted by Flash:
All headers from any domain accepted

<allow-http-request-headers-from domain="*" headers="*" />

Flash / Silverlight - crossdomain.xml

Silverlight: http://msdn.microsoft.com/en-us/library/cc197955%28v=vs.95%29.aspx

CSRF by design ���� read tokens = attacker WIN

<?xml version="1.0" encoding="utf-8"?><access-policy><cross-domain-
access><policy>

<allow-from http-request-headers="SOAPAction">

<domain uri="*"/>

</allow-from>

<grant-to><resource path="/" include-subpaths="true"/></grant-to>

</policy></cross-domain-access></access-policy>

Silverlight - clientaccesspolicy.xml

Static analysis: Download + decompile Flash files

Flare: http://www.nowrap.de/flare.html

Flasm (timelines, etc): http://www.nowrap.de/flasm.html

$ flare hello.swf

SWFScan

SWFScan: http://www.brothersoft.com/hp-swfscan-download-253747.html

Static analysis tools

Adobe SWF Investigator
http://labs.adobe.com/technologies/swfinvestigator/

Good news: Unlike DOM XSS, the # trick will always work for Flash Files

Active testing ☺

1) Trip to server = need permission
http://target.com/test.swf?xss=foo&xss2=bar

2) But … your browser is yours:
No trip to server = no permission needed

http://target.com/test.swf#?xss=foo&xss2=bar

Need help?

UI Redressing protections:
• X-Frame-Options (best)
• X-Content-Security-Policy (FF >= 4.0 + Chrome >= 13)
• JavaScript Frame busting (bypassable sometimes)

X-Frame-Options: Deny

BadGood

Andrew Horton’s “Clickjacking for Shells”:
http://www.morningstarsecurity.com/research/clickjacking-wordpress

Krzysztof Kotowicz’s “Something Wicked this way comes”:
http://www.slideshare.net/kkotowicz/html5-something-wicked-this-way-comes-
hackpra
https://connect.ruhr-uni-bochum.de/p3g2butmrt4/

Marcus Niemietz’s “UI Redressing and Clickjacking”:
http://www.slideshare.net/DefconRussia/marcus-niemietz-ui-redressing-and-
clickjacking-about-click-fraud-and-data-theft

Too much info?
Use the filter to drill to what you care about:

Business Conclusion

• Web app security > Input validation
• We see no traffic != we are not targeted
• No IDS alerts != we are safe
• Your site can be tested without you noticing
• Test your security before others do

1872-8778-6931-6727-6849

Pen tester Conclusion

• No permission != cannot start
• A lot of work can be done in advance

This work in advance helps with:
• Increased efficiency
• Deal better with tight deadlines
• Better pre-engagement
• Better test quality
• Best chance to get in

1872-8778-6931-6727-6849

Bottom line
Do not wait for “Tool X” or Permission

Phil Stevens - http://www.strengthguild.com/ http://www.ironradio.org/

Bottom line
Try harder!

Benedikt Magnusson - 1015lbs / 461kg World Record Deadlift

2nd April 2011

Special thanks to

OWASP Testing Guide contributors

Finux Tech Weekly – Episode 17 – mins 31-49
http://www.finux.co.uk/episodes/mp3/FTW-EP17.mp3
Finux Tech Weekly – Episode 12 – mins 33-38
http://www.finux.co.uk/episodes/mp3/FTW-EP12.mp3
http://www.finux.co.uk/episodes/ogg/FTW-EP12.ogg
Exotic Liability – Episode 83 – mins 49-53
http://exoticliability.libsyn.com/exotic-liability-83-oh-yeah

Adi Mutu (@am06), Krzysztof Kotowicz (@kkotowicz),
Marc Wickenden (@marcwickenden), Marcus Niemietz (@mniemietz),

Mario Heiderich (@0x6D6172696F), Michael Kohl (@citizen428), Nicolas
Grégoire (@Agarri_FR), Sandro Gauci (@sandrogauci)

Q&A

Abraham Aranguren
@7a_ @owtfp

abraham.aranguren@gmail.com
http://7-a.org

http://owtf.org

Project Site (links to everything): http://owtf.org
• Try OWTF: https://github.com/7a/owtf/tree/master/releases
• Try a demo report: https://github.com/7a/owtf/tree/master/demos
• Documentation: https://github.com/7a/owtf/tree/master/readme
• Contribute: https://github.com/7a/owtf

1872-8778-6931-6727-6849

